1. Procedure to Determine the Specific Absorption Rate (SAR) for Hand-held Devices Used in Close Proximity to the Ear (Frequency Range of 300MHz to 3 GHz), International Electrotechnical Commission (IEC) Standard 62209-1, Feb. 2005.
2. IEEE Recommended Practice for Determining the Peak Spatial-average Specific Absorption Rate (SAR) in the Human Head From Wireless Communications Devices: Measurement Techniques, IEEE Standard 1528-2003, Dec. 2003.
3. Weil, C. M., "Absorption characteristics of multilayered sphere models exposed to UHF/microwave radiation," IEEE Trans. Biomed. Eng., Vol. 22, 468-476, 1975.
doi:10.1109/TBME.1975.324467
4. Cottis, P. G. and N. K. Uzunoglu, "Focusing properties of dipole arrays placed near a multilayer lossy sphere," Journal of Electromagnetic Waves and Applications, Vol. 4, No. 5, 431-440, 1990.
5. Nikita, K., G. Stamatakos, N. Uzunoglu, and A. Karafotias, "Analysis of the interaction between a layered spherical human head model and a finite-length dipole," IEEE Trans. Microwave Theory Tech., Vol. 48, 2003-2013, 2000.
6. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, 409-418, 1982.
doi:10.1109/TAP.1982.1142818
7. Dimbylow, P. J. and O. P. Gandhi, "Finite-difference time-domain calculations of SAR in a realistic heterogeneous model of the head for plane-wave exposure from 600MHz to 3 GHz," Phys. Med. Biol., Vol. 36, 1075-1089, 1991.
doi:10.1088/0031-9155/36/8/004
8. Okoniewski, M. and M. A. Stuchly, "A study of the handset antenna and human body interaction," IEEE Trans. Microwave Theory Tech., Vol. 44, 1855-1864, 1996.
doi:10.1109/22.539944
9. Kühn, S., W. Jennings, A. Christ, and N. Kuster, "Assessment of induced radio-frequency electromagnetic fields in various anatomical human body models," Phys. Med. Biol., Vol. 54, 875-890, 2009.
doi:10.1088/0031-9155/54/4/004
10. Christ, A., A. Klingenböck, T. Samaras, C. Goiceanu, and N. Kuster, "The dependence of electromagnetic far-field absorption on body tissue composition in the frequency range from 300MHz to 6 GHz," IEEE Trans. Microwave Theory Tech., Vol. 54, 2188-2195, 2006.
doi:10.1109/TMTT.2006.872789
11. Meyer, F. J. C., D. B. Davidson, U. Jakobus, and M. A. Stuchly, "Human exposure assessment in the near field of GSM base-station antennas using a hybrid finite element/method of moments technique," IEEE Trans. Biomed. Eng., Vol. 50, 224-233, 2003.
doi:10.1109/TBME.2002.807639
12. Abd-Alhameed, R. A., P. S. Excell, and M. A. Mangoud, "Computation of specific absorption rate in the human body due to base-station antennas using a hybrid formulation," IEEE Trans. Microwave Theory Tech., Vol. 48, 2014-2021, 2000.
13. Mangoud, M. A., R. A. Abd-Alhameed, and P. S. Excell, "Simulation of human interaction with mobile telephones using hybrid techniques over coupled domains," IEEE Trans. on Electromagnetic Compatibility, Vol. 47, 374-381, 2005.
14. Cerri, G., P. Russo, A. Schiavoni, G. Tribellini, and P. Bielli, "MOM-FDTD hybrid technique for analyzing scattering problems," Electronics Letters, Vol. 34, 438-440, 1998.
doi:10.1049/el:19980394
15. Koulouridis, S. and K. S. Nikita, "Study of the coupling between human head and cellular phone helical antennas," IEEE Trans. on Electromagnetic Compatibility, Vol. 46, 62-70, 2004.
doi:10.1109/TEMC.2004.823612
16. Kaye, M., P. K. Murthy, and G. A. Thiele, "An iterative method for solving scattering problem," IEEE Trans. Antennas Propag., Vol. 33, 1272-1279, 1985.
doi:10.1109/TAP.1985.1143510
17. Waterman, P. C., "Matrix formulation of electromagnetic scattering," Proc. IEEE, Vol. 53, 805-812, 1965.
doi:10.1109/PROC.1965.4058
18. Waterman, P. C., "Scattering by dielectric obstacles," Alta Freq., Vol. 38, 348-352, 1969.
19. Waterman, P. C., "New formulation of acoustic scattering," J. Acoust. Soc. Am., Vol. 45, 1417-1429, 1969.
doi:10.1121/1.1911619
20. Peterson, B. and S. Ström, "T-matrix for electromagnetic scattering from an arbitrary number of scatterers and representations of E(3)," Phys. Rev. D, Vol. 8, 3661-3678, 1973.
doi:10.1103/PhysRevD.8.3661
21. Ström, S. and W. Zheng, "The null field approach to electromagnetic scattering from composite objects," IEEE Trans. Antennas Propag., Vol. 36, 376-382, 1988.
doi:10.1109/8.192121
22. Strom, S. and W. Zheng, "Basic features of the null field method for dielectric scatterers," Radio Science, Vol. 22, 1273-1281, 1987.
doi:10.1029/RS022i007p01273
23. Gürel, L. and W. C. Chew, "Recursive algorithms for the scattering by N disks or strips," IEEE Trans. Antennas Propag., Vol. 38, 507-515, 1990.
doi:10.1109/8.52269
24. Doicu, A. and T. Wriedt, "Null-field method with discrete sources to electromagnetic scattering from layered scatterers," Comput. Phys. Commun., Vol. 138, 136-142, 2001.
doi:10.1016/S0010-4655(01)00202-8
25. Doicu, A., T. Wriedt, and Y. A. Eremin, Light Scattering by Systems of Particles, Springer, 2006.
doi:10.1007/978-3-540-33697-6
26. Tsitsas, N. L., "Direct and inverse dipole electromagnetic scattering by a piecewise homogeneous sphere," J. Applied Mathematics and Mechanics, Vol. 89, 833-849, 2009.
27. Doicu, A. and T. Wried, "Near-field computation using the null-field method," J. Quant. Spectrosc. Radiat. Transf., Vol. 111, 466-473, 2010.
doi:10.1016/j.jqsrt.2009.10.003
28. Makarov, S., "MoM antenna simulations with matlab: RWG basis functions," IEEE Antennas Propagat. Mag., Vol. 43, 100-107, 2001.
doi:10.1109/74.979384
29. Harrington, R. F., Time-harmonic Electromagnetic Fields, Section 3.5, McGraw-Hill, 1961.
30. Morse, P. M. and H. Feshbach, Methods of Theoretical Physics, Part 2, Chapter 13, McGraw-Hill, 1953.
31. GEMS Quick Star Guide: http://www.2comu.com.
32. Yu, W., R. Mittra, T. Su, Y. Liu, and X. Yang, Parallel Finite Difference Time Domain Method, Artech House, Jun. 2006.
33. Yu, W., X. Yang, Y. Liu, R. Mittra, D.-C. Chang, C.-H. Liao, M. Akira, W. Li, and L. Zhao, "New development of parallel conformal FDTD method in computational electromagnetics engineering," IEEEAntennas Propagat. Mag., Vol. 53, 15-41, 2011.
doi:10.1109/MAP.2011.6028417