Vol. 22
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-12-19
Design of Dual Pattern Concentric Ring Array Antenna Using Differential Evolution Algorithm with Novel Evolutionary Operators
By
Progress In Electromagnetics Research M, Vol. 22, 163-178, 2012
Abstract
Concentric ring antenna arrays with the ability to produce dual pattern have many applications in communications and radar engineering. In this paper, we represent a new method for design of an optimized reconfigurable concentric ring array with dual pattern of desired specifications. Here, our goal is to find a suitable common element excitation amplitude distribution and two different element excitation phase distributions for two desired radiation patterns. For this purpose, we have proposed a novel objective function which is completely different from the traditional objective functions usually used in antenna design problems. For the optimization procedure, we have developed a modified Differential Evolution (DE) algorithm, denoted as DE_rBM_2SX, which employs new kinds of crossover and mutation operators to overcome some drawbacks of the classical DE on single-objective fitness landscapes. We consider three types of dual pattern - pencil beam+pencil beam, pencil beam+flat-top beam, flat-top beam+flat-top beam. The simulation results obtained by applying our proposed method clearly indicate that our method is very convenient to obtain radiation patterns of desired specifications. We compare results of the modified DE algorithm with those of another state-of-the-art improved variant of DE, called JADE and a state-of-the-art variant of the Particle Swarm Optimization (PSO) algorithm called Comprehensive Learning Particle Swarm Optimizer (CLPSO). Such comparisons reflect that the proposed algorithm is more efficient than JADE or CLPSO in finding optimum configuration of the dual pattern concentric ring array antenna. nullS
Citation
Ankush Mandal, and Swagatam Das, "Design of Dual Pattern Concentric Ring Array Antenna Using Differential Evolution Algorithm with Novel Evolutionary Operators," Progress In Electromagnetics Research M, Vol. 22, 163-178, 2012.
doi:10.2528/PIERM11110708
References

1. Diaz, X., J. A. Rodriguez, F. Ares, and E. Moreno, "Design of phase-differentiated multiple-pattern antenna arrays," Microwave Opt. Technol. Lett., Vol. 26, 52-53, Jul. 2000.
doi:10.1002/(SICI)1098-2760(20000705)26:1<52::AID-MOP16>3.0.CO;2-0

2. Durr, M., A. Trastoy, and F. Ares, "Multiple-pattern linear antenna arrays with single prefixed amplitude distributions: Modified Woodward-Lawson synthesis," Electronics Letters, Vol. 36, No. 16, 1345-1346, Aug. 2000.
doi:10.1049/el:20000980

3. Bucci, O. M., G. Mazzarella, and G. Panariello, "Reconfigurable arrays by phase only control," IEEE Trans. Antennas Propag., Vol. 39, No. 7, 919-925, Jul. 1991.
doi:10.1109/8.86910

4. Vaitheeswaran, S. M., "Dual beam synthesis using element position perturbations and the G3-GA algorithm," Progress In Electromagnetics Research, Vol. 87, 43-61, 2008.
doi:10.2528/PIER08091601

5. Kumar, B. P. and G. R. Brenner, "Design of unequally spaced arrays for improved performance," IEEE Trans. Antennas Propag., Vol. 47, No. 32, 511-523, Mar. 1999.
doi:10.1109/8.768787

6. Haupt, R. L., "Optimized element spacing for low side lobe concentric ring arrays," IEEE Trans. Antennas Propag., Vol. 56, No. 1, 266-268, Jan. 2008.
doi:10.1109/TAP.2007.913176

7. Chakrabarty, A., B. N. Das, and G. S. Sanyal, "Beam shaping using nonlinear phase distribution in a uniformly spaced array," IEEE Trans. Antennas and Propag., Vol. 30, 1031-1034, 1982.
doi:10.1109/TAP.1982.1142917

8. Trastoy, A. and F. Ares, "Phase-only control of antenna sum patterns," Progress In Electromagnetics Research, Vol. 30, 47-57, 2001.
doi:10.2528/PIER00012401

9. Storn, R. and K. Price, "Differential evolution - A simple and effcient heuristic for global optimization over continuous spaces," Journal of Global Optimization, Vol. 11, No. 4, 341-359, 1997.
doi:10.1023/A:1008202821328

10. Zhang, J. and A. C. Sanderson, "JADE: Adaptive differential evolution with optional external archive," IEEE Trans. Evol. Comput., Vol. 13, No. 5, 945-958, Oct. 2009.
doi:10.1109/TEVC.2009.2014613

11. Liang, J. J., A. K. Qin, P. N. Suganthan, and S. Baskar, "Comprehensive learning particle swarm optimizer for global optimization of multimodal functions," IEEE Trans. on Evol. Compt., Vol. 10, 281-295, 2006.
doi:10.1109/TEVC.2005.857610

12. Mahanti, G. K., A. Chakrabarty, and S. Das, "Phase-only and amplitude-phase synthesis of dual-pattern linear antenna arrays using floating-point genetic algorithms," Progress In Electromagnetics Research, Vol. 68, 247-259, 2007.
doi:10.2528/PIER06072301

13. Haupt, L. R., "Phase-only adaptive nulling with a genetic algorithm," IEEE Trans. Antennas Propag., Vol. 45, No. 6, 1009-1015, 1997.
doi:10.1109/8.585749

14. Ares, F., J. A. Rodriguez, E. Villanueva, and S. R. Rengarajan, "Genetic algorithms in the design and optimization of antenna array patterns," IEEE Trans. Antennas Propag., Vol. 47, 506-510, 1999.
doi:10.1109/8.768786

15. Boeringer, D. W. and D. H.Werner, "Particle swarm optimization versus genetic algorithms for phased array synthesis," IEEE Trans. Antennas Propag., Vol. 52, 771-779, 2004.
doi:10.1109/TAP.2004.825102

16. Grimaccia, F., M. Mussetta, and R. E. Zich, "Genetical swarm optimization: Self-adaptive hybrid evolutionary algorithm for electromagnetics," IEEE Trans. Antennas Propagat., Vol. 55, 781-785, 2007.
doi:10.1109/TAP.2007.891561

17. Guney, K. and M. Onay, "Amplitude-only pattern nulling of linear antenna arrays with the use of bees algorithm," Progress In Electromagnetics Research, Vol. 70, 21-36, 2007.
doi:10.2528/PIER07011204

18. Xu, Z., H. Li, and Q. Z. Liu, "Pattern synthesis of conformal antenna array by the hybrid genetic algorithm," Progress In Electromagnetics Research, Vol. 79, 75-90, 2008.
doi:10.2528/PIER07091901

19. Khodier, M. M. and C. G. Christodoulou, "Linear array geometry synthesis with minimum sidelobe level and null control using particle swarm optimization," IEEE Trans. Antennas Propagat., Vol. 53, 2674-2679, 2005.
doi:10.1109/TAP.2005.851762

20. Jin, N. and Y. Rahmat-Samii, "Advances in particle swarm optimization for antenna designs: Real-number, binary, singleobjective and multiobjective implementations," IEEE Trans. Antennas Propagat., Vol. 55, 556-567, 2007.
doi:10.1109/TAP.2007.891552

21. Kurup, D. G., M. Himdi, and A. Rydberg, "Synthesis of uniform amplitude unequally spaced antenna arrays using the differential evolution algorithm," IEEE Trans. Antennas Propagat., Vol. 51, 2210-2217, 2003.
doi:10.1109/TAP.2003.816361

22. Ho, S. L., S. Yang, G. Ni, et al. "A particle swarm optimization method with enhanced global search ability for design optimizations of electromagnetic devices," IEEE Trans. Magnetics., Vol. 42, 1107-1110, 2006.
doi:10.1109/TMAG.2006.871426

23. Das, S. and P. N. Suganthan, "Differential evolution - A survey of the state-of-the-art," IEEE Transactions on Evolutionary Computation, Vol. 15, No. 1, 4-31, 2011.
doi:10.1109/TEVC.2010.2059031

24. Lampinen, J. and I. Zelinka, "On stagnation of the differential evolution algorithm," Proc. of MENDEL 2000, 6th International Mendel Conference on Soft Computing, P. O·smera (ed.), 76-83, Brno, Czech Republic, Jun. 7-9, 2000.

25. Stearns, C. and A. Stewart, "An investigation of concentric ring antennas with low sidelobes," IEEE Trans. Antennas Propag., Vol. 13, No. 6, 856-863, Nov. 1965.
doi:10.1109/TAP.1965.1138544

26. Goto, N. and D. K. Cheng, "On the synthesis of concentric-ring arrays," IEEE Proc., Vol. 58, No. 5, 839-840, May 1970.
doi:10.1109/PROC.1970.7776

27. Biller, L. and G. Friedman, "Optimization of radiation patterns for an array of concentric ring sources," IEEE Trans. Audio Electroacoust., Vol. 21, No. 1, 57-61, Feb. 1973.
doi:10.1109/TAU.1973.1162432

28. Huebner, D., "Design and optimization of small concentric ring arrays," Proc. IEEE Antennas Propagation Int. Symp., Vol. 16, 455-458, May 1978.

29. Dessouky, M. I., H. A. Sharshar, and Y. A. Albagory, "Effcient sidelobe reduction technique for small-sized concentric circular arrays," Progress In Electromagnetics Research, Vol. 65, 187-200, 2006.
doi:10.2528/PIER06092503

30. Dessouky, M. I., H. A. Sharshar, and Y. A. Albagory, "Optimum normalized-Gaussian tapering window for side lobe reduction in uniform concentric circular arrays," Progress In Electromagnetics Research, Vol. 69, 35-46, 2007.
doi:10.2528/PIER06111301