Vol. 22
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-12-21
Beam Propagation Factor of Partially Coherent Laguerre --- Gaussian Beams in Non-Kolmogorov Turbulence
By
Progress In Electromagnetics Research M, Vol. 22, 205-218, 2012
Abstract
In order to study beam-propagation factor (M2-factor) of partially coherent Laguerre-Gaussian (PCLG) beams in non-Kolmogorov turbulence, a generalized exponent and a generalized amplitude factor are introduced. Based on the extended Huygens-Fresnel principle and second-order moments of the Wigner distribution function (WDF), the analytical formula of M2-factor for PCLG beams in non-Kolmogorov turbulence is derived. The corresponding numerical results are also calculated. Results show that for PCLG beams propagating in non-Kolmogorov turbulence, the bigger the beam order or outer scale is, or the smaller the correlation length, C2n, or inner scale is, the smaller the value of the normalized M2-factor is. Furthermore, the normalized M2-factor of PLG beams increases with the increasing of α until it reaches the maximum point, then it gradually decreases with the increasing of α. 2
Citation
Hui Luo, Huafeng Xu, Zhifeng Cui, and Jun Qu, "Beam Propagation Factor of Partially Coherent Laguerre --- Gaussian Beams in Non-Kolmogorov Turbulence," Progress In Electromagnetics Research M, Vol. 22, 205-218, 2012.
doi:10.2528/PIERM11102203
References

1. Hona, J., E. N. Nyobe, and E. Pemha, "Experimental technique using an interference pattern for measuring directional fluctuations of a laser beam created by a strong thermal turbulence," Progress In Electromagnetics Research, Vol. 84, 289-306, 2008.
doi:10.2528/PIER08072803

2. Rao, C., W. Jiang, and N. Ling, "Spatial and temporal characterization of phase fluctuations in non-Kolmogorov atmospheric turbulence," J. Mod. Opt., Vol. 47, No. 6, 1111-1126, 2000.
doi:10.1080/09500340008233408

3. Wu, G. H., H. Guo, S. Yu, and B. Luo, "Spreading and direction of Gaussian-Schell model beam through a non-Kolmogorov turbulence," Opt. Lett., Vol. 35, No. 5, 715-717, 2010.
doi:10.1364/OL.35.000715

4. Zilberman, A., E. Golbraikh, and N. S. Kopeika, "Propagation of electromagnetic waves in Kolmogorov and non-Kolmogorov atmospheric turbulence: Three-layer altitude model," Appl. Opt., Vol. 47, No. 34, 6385-6391, 2008.
doi:10.1364/AO.47.006385

5. Toselli, I., L. C. Andrews, R. L. Phillips, and V. Ferrero, "Angle of arrival FLuctuations for free space laser beam propagation through non-Kolmogorov turbulence," Proc. SPIE, Vol. 6551, No. 65510E, 1-12, 2007.

6. Toselli, I., L. C. Andrews, R. L. Phillips, and V. Ferrero, "Free-space optical system performance for laser beam propagation through non-Kolmogorov turbulence," Opt. Engineering, Vol. 47, 026003, 2008.

7. Zhou, P., Y. X. Ma, X. L. Wang, H. C. Zhao, and Z. J. Liu, "Average spreading of a gaussian beam array in non-Kolmogorov turbulence," Opt. Lett., Vol. 35, No. 7, 1043-1045, 2010.
doi:10.1364/OL.35.001043

8. Shchepakina, E. and O. Korotkova, "Second-order statistics of stochastic electromagnetic beams propagating through non- Kolmogorov turbulence," Opt. Express, Vol. 18, No. 10, 10650-10658, 2010.
doi:10.1364/OE.18.010650

9. Eyyuboglu, H. T. and Y. Baykal, "Analysis of reciprocity of cos-Gaussian and cosh-Gaussian laser beams in turbulent atmosphere," Opt. Express, Vol. 12, No. 20, 4659-4674, 2004.
doi:10.1364/OPEX.12.004659

10. Cai, Y. and S. He, "Propagation of various dark hollow beams in a turbulent atmosphere," Opt. Express, Vol. 14, No. 4, 1353-1367, 2006.
doi:10.1364/OE.14.001353

11. Eyyuboglu, H. T., C. Arpali, and Y. Baykal, "Flat topped beams and their characteristics in turbulent media," Opt. Express, Vol. 14, No. 10, 4196-4207, 2006.
doi:10.1364/OE.14.004196

12. Zhu, Y., D. Zhao, and X. Du, "Propagation of stochastic Gaussian-Schell model array beams in turbulent atmosphere," Opt. Express, Vol. 16, No. 22, 18437-18442, 2008.
doi:10.1364/OE.16.018437

13. Amarande, S.-A., "Beam propagation factor and the kurtosis parameter of flattened Gaussian beams," Opt. Commun., Vol. 129, No. 5-6, 311-317, 1996.

14. Zhou, G. Q. and J. Zheng, "Beam propagation of a higher-order cosh-Gaussian beam," Optics & Laser Technology, Vol. 41, No. 2, 202-208, 2009.
doi:10.1016/j.optlastec.2008.05.002

15. Li, Y. Q., Z.-S. Wu, and L. G. Wang, "Polarization characteristics of a partially coherent Gaussian Schell-model beam in slant atmospheric turbulence," Progress In Electromagnetics Research, Vol. 121, 453-468, 2011.
doi:10.2528/PIER11092201

16. Wu, Z.-S., H.-Y. Wei, R.-K. Yang, and L.-X. Guo, "Study on scintillation considering inner- and outer-scales for laser beam propagation on the slant path through the atmospheric turbulence," Progress In Electromagnetics Research, Vol. 80, 277-293, 2008.
doi:10.2528/PIER07112505

17. Siegman, A. E., "New developments in laser resonators," Proc. SPIE., Vol. 1224, 2-14, 1990.
doi:10.1117/12.18425

18. Gori, F. and M. Santarsiero, "The change of width for a partially coherent beam on paraxial propagation," Opt. Commun., Vol. 82, No. 3-4, 197-203, 1991.
doi:10.1016/0030-4018(91)90444-I

19. Santarsiero, M., F. Gori, et al. "Spreading properties of beams radiated by partially coherent Schell-model sources," J. Opt. Soc. Am. A, Vol. 16, No. 1, 106-112, 1999.
doi:10.1364/JOSAA.16.000106

20. Baida, L. and S. R. Luo, "Beam propagation factor of hard- edge diffracted cosh-Gaussian beams," Opt. Commun., Vol. 178, No. 4-6, 275-281, 2000.
doi:10.1016/S0030-4018(00)00662-3

21. Dan, Y. Q. and B. Zhang, "Beam propagation factor of partially coherent flat-topped beams in a turbulent atmosphere," Opt. Express, Vol. 16, No. 20, 15563-15575, 2008.
doi:10.1364/OE.16.015563

22. Yuan, Y. S., Y. J. Cai, J. Qu, et al. "M 2-factor of coherent and partially coherent dark hollow beams propagating in turbulent atmosphere," Opt. Express, Vol. 17, No. 20, 17344-17356, 2009.
doi:10.1364/OE.17.017344

23. Chu, X., "Evolution of beam quality and shape of Hermite-Gaussian beam in non-Kolmogorov turbulence," Progress In Electromagnetics Research, Vol. 120, 339-353, 2011.

24. Wang, F., Y. J. Cai, and O. Korotkova, "Partially coherent standard and elegant Laguerre-Gaussian beams of all orders," Opt. Express, Vol. 17, No. 25, 22366-22379, 2009.
doi:10.1364/OE.17.022366

25. Qiu, Y. L., H. Guo, and Z. X. Chen, "Paraxial propagation of partially coherent Hermite-Gauss beams," Opt. Commun., Vol. 245, No. 1-6, 21-26, 2005.
doi:10.1016/j.optcom.2004.10.032

26. Zahid, M. and M. S. Zubairy, "Directionality of partially coherent Bessel-Gauss beams," Opt. Commun., Vol. 70, No. 5, 361-364, 1989.
doi:10.1016/0030-4018(89)90131-4

27. Dan, Y., B. Zhang, and P. Pan, "Propagation of partially coherent flat-topper beam through a turbulent atmosphere," J. Opt. Soc. Am. A., Vol. 25, No. 9, 2223-2231, 2008.
doi:10.1364/JOSAA.25.002223

28. Cui, L.-Y., B.-D. Xue, X.-G. Cao, J.-K. Dong, and J.-N. Wang, "Generalized atmospheric turbulence MTF for wave propagating through non-Kolmogorov turbulence," Opt. Express, Vol. 18, No. 20, 21269-21283, 2010.
doi:10.1364/OE.18.021269

29. Bastiaans, M. J., "Application of the wigner distribution function to partially coherent light," J. Opt. Soc. Am. A, Vol. 3, No. 8, 1227-1238, 1986.
doi:10.1364/JOSAA.3.001227

30. Serna, J., R. Martinez-Herrero, and P. M. Mejias, "Parametric characterization of general partially coherent beams propagating through ABCD optical systems," J. Opt. Soc. Am. A, Vol. 8, No. 7, 1094-1098, 1991.
doi:10.1364/JOSAA.8.001094

31. Martinez-Herrero, R., G. Piquero, and P. M. Mejias, "On the propagation of the kurtosis parameter of general beams," Opt. Commun., Vol. 115, No. 3-4, 225-232, 1995.
doi:10.1016/0030-4018(95)00012-W