Vol. 28
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-12-07
Analytical Calculation of Band Gap of a 1D Planar Ternary Photonic Crystal by Simulating with a Symmetric Lossless Transmission Line
By
Progress In Electromagnetics Research Letters, Vol. 28, 101-109, 2012
Abstract
We simulate a 1D ternary photonic crystal (TPC) employed as a clad of a photonic crystal waveguide (PCW) which consists three different lossless dielectric layers as a unit-cell. Calculating input impedance at each layer interface and using a lossless reciprocal transmission line as a model, we can predict angle intervals in which reflection occurs due to photonic crystal effect. Comparing this method with transfer matrix method and bang structure shows perfect agreement.
Citation
Abdolrasoul Gharaati, and Alireza Serajfard, "Analytical Calculation of Band Gap of a 1D Planar Ternary Photonic Crystal by Simulating with a Symmetric Lossless Transmission Line," Progress In Electromagnetics Research Letters, Vol. 28, 101-109, 2012.
doi:10.2528/PIERL11102007
References

1. Miyoki, S., S. Sato, M. Ohashi, and M. K. Fujimoto, "Technique to estimate the re°ectance of a high-reflectance dielectric multilayer coating mirror using incident beam angular dependence of its transmittance," Optical Review, Vol. 5, 17-19, 1998.
doi:10.1007/s10043-998-0017-9

2. Brunner, R. and E. Pincik, "Reflectance spectrometry of TiO2 optical coatings on C-Si: The real data based simulation," Acta Physica Slovaca, Vol. 51, 17-26, 2001.

3. Cho, , K., T. Hirai, and T. Ikawa, "Propagating mode in the photonic gap of 1D resonant Bragg reflector," Journal of Luminescence, Vol. 100, 283-289, 2002.
doi:10.1016/S0022-2313(02)00422-2

4. Gusarov , A. I., D. B. Doyle, F. Berghmans, and O. Deparis, "Analysis of photo induced stress distribution in fiber Bragg gratings," Optics Letters, Vol. 24, 1334-1336, 1999.
doi:10.1364/OL.24.001334

5. Nistad, B., M. W. Haakestad, and J. Skaar, "Dispersion properties of planar Bragg waveguides," Optics Communications, Vol. 265, 153-160, 2006.
doi:10.1016/j.optcom.2006.03.014

6. Burckel, D. B. and S. R. J. Brueck, "Generalized transverse Bragg waveguides," Optics Express, Vol. 13, 9202-9210, 2005.
doi:10.1364/OPEX.13.009202

7. Srivastava, R., S. Pati, and S. P. Ojha, "Enhancement of omnidirectional re°ection in photonic crystal heterostructures," Progress In Electromagnetics Research B, Vol. 1, 197-208, 2008.
doi:10.2528/PIERB07102903

8. Krauss, , T. F., "Planar photonic crystal waveguide devices for integrated optics," Phys. Stat. Sol. (A), Vol. 197, 688-702, 2003.
doi:10.1002/pssa.200303117

9. SΦndergaard, T. and A. Lavrinenko, "Large-bandwidth planar photonic crystal waveguides," Optics Communications, Vol. 203, 263-270, 2002.
doi:10.1016/S0030-4018(02)01172-0

10. Wu , L., "Planar photonic crystal polarization splitter," Optics Letters, Vol. 29, 1620-1622, 2004.
doi:10.1364/OL.29.001620

11. Wang, Z.-Y., X.-M. Cheng, X.-Q. He, S.-L. Fan, and W.-Z. Yan, "Photonic crystal narrow filters with negative refractive index structural defects," Progress In Electromagnetics Research, Vol. 80, 421-430, 2008.
doi:10.2528/PIER07121002

12. Oraizi , H. and M. Afsahi, "Analysis of planar dielectric multilayers as FSS by transmission line transfer matrix method (TLTMM)," Progress In Electromagnetics Research, Vol. 74, 217-240, 2007.
doi:10.2528/PIER07042401

13. Romo, G. and T. Smy, "Dispersion relation calculation of photonic crystals using the transmission line matrix method," Int. J. Numer. Model, Vol. 17, 451-459, 2004.
doi:10.1002/jnm.550

14. Safaai-Jazi, A., M. R. Albandakji, and S. Mirlohi, "Exact solutions of planar photonic crystal waveguides with infinite claddings," Proc. of SPIE, 6369, 63690K, 2006.

15. Banerjee, A., "Enhanced refractometric optical sensing by using one-dimensional ternary photonic crystals," Progress In Electromagnetics Research, Vol. 89, 11-22, 2009.
doi:10.2528/PIER08112105

16. Xiao, Z. Y. and Z. H. Wang, "One-dimensional chiral photonic band gap structure analyzed by non-symmetric transmission-line method," Optics Communications, Vol. 237, 229-233, 2004.
doi:10.1016/j.optcom.2004.04.015

17. Poza , D. M., Microwave Engineering, John Wiley & Sons, Inc., 2005.

18. Torrungrueng, D. and S. Lamultree, "Analysis of planar multilayer structures at oblique incidence using an equivalent BCITL model," Progress In Electromagnetics Research C, Vol. 4, 13-24, 2008.
doi:10.2528/PIERB07121903

19. Gharaati, A. and S. A. Serajfard, "Investigation of a ternary 1D photonic crystal band gap width," ICP2010-48, 2010.

20. Manzanares-Martinez, J., P. Castro-Garay, D. Moctezuma-Enriquez, R. Archuleta-Garcia, and M. A. Velarde-Chong, "Complex band structure in one-dimensional photonic heterostructures," Adv. Studies Theor. Phys., Vol. 4, 759-772, 2010.

21. Gharaati, A. Z. Zare, "Photonic band structures and enhancement of omnidirectional reflection bands by using a ternary 1D photonic crystal including left-handed materials," Progress In Electromagnetics Research M, Vol. 20, 80-94, 2011.
doi:10.2528/PIERM11070711