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Abstract—We simulate a 1D ternary photonic crystal (TPC)
employed as a clad of a photonic crystal waveguide (PCW) which
consists three different lossless dielectric layers as a unit-cell.
Calculating input impedance at each layer interface and using a lossless
reciprocal transmission line as a model, we can predict angle intervals
in which reflection occurs due to photonic crystal effect. Comparing
this method with transfer matrix method and bang structure shows
perfect agreement.

1. INTRODUCTION

A transmission line guides energy from one place to another.
Optical fibers, waveguides, telephone lines and power cables are all
electromagnetic transmission lines. Photonic crystals are new kinds
of materials that prohibit transmission of light in specific ranges of
frequencies called photonic band gap (PBG). The PBG underlies
the operation of such widespread optical components as multilayer
coatings [1, 2], Bragg reflectors and waveguides [3–7], planar photonic
crystal waveguide devices [8, 9], planar photonic crystal polarization
splitter [10] and as optical filters by using a defect [11]. The PCWs
have been the subject of extensive research recently because of their
ability to control the propagation of light in a manner different from
total internal reflection. The TPC can have several applications like
refractometric sensing elements.
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Figure 1. A TPC waveguide index profile.

Multilayer dielectric structures have been analyzed by different
methods, like transmission line matrix method [12] which is used as a
modeling tool for computation of the dispersion relation of photonic
crystals (PCs) [13] and closed form analytical solution which has been
presented before for 1D planar binary PCW’s with infinite number of
cladding layers [14, 15].

In this paper, we present exact analytical solutions for a 1D planar
TPC waveguide by using transmission line concept.

2. REFLECTION OF A SEMI-INFINITE PERIODIC
DIELECTRIC STRUCTURE

A profile of a 1D planar TPC waveguide with infinite cladding is shown
in Figure 1. Such a waveguide may be viewed as a dielectric region of
thickness 2a and refractive index n1 sandwiched between two semi-
infinite periodic structures (regions x < −a and a < x). Thus,
propagation of electromagnetic waves in this waveguide essentially
amounts to multiple reflections between the two semi-infinite regions.
These regions consist of periods of three different lossless dielectric
layers with n1 < n2 < n3 indices and d1 = d2 = d3 thicknesses.

In the transmission lines theory, reflection coefficient is [16–18]:

Γ =
Zin − Z1

Zin + Z1
. (1)

Input impedance Zin (the impedance at the beginning of crystal or
at the beginning of equivalent transmission line) at x = a is equal to
input impedance seen at x = a+ d1 + d2 + d3. Using relations between
input impedance at boundaries, input impedances at first, second and
third boundaries in the right hand clad are:
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Zin(x = a) = Z2
Z
′
in + iZ2 tan(β2d2)

Z2 + iZ
′
in tan(β2d2)

, (2)

Z
′
in(x = a + d2) = Z3

Z
′′
in + iZ3 tan(β3d3)

Z3 + iZ
′′
in tan(β3d3)

, (3)

Z
′′
in(x = a + d2 + d3) = Z1

Zin + iZ1 tan(β1d1)
Z1 + iZin tan(β1d1)

, (4)

where Zi, ni and βi are wave impedances, refractive index propagation
constants in the ith layer of a unit cell for i = 1, 2, 3, respectively. If
we solve these three equations for Zin, simplifying and rearranging the
terms, we obtain

a0Z
2
in + b0Zin + c0 = 0, (5)

where the coefficients of Zin are

a0 = i tan (β2d2) Z3Z1 + i tan (β1d1) Z3Z2 + i tan (β3d3) Z1Z2

+iZ2
3 tan (β1d1) tan (β2d2) tan (β3d3) , (6)

b0 = Z2
2Z3 tan (β2d2) tan (β1d1) + Z2

2Z1 tan (β2d2) tan (β3d3)
+Z2

3Z2 tan (β3d3) tan (β1d1)− Z2
1Z3 tan (β2d2) tan (β1d1)

−Z2
3Z1 tan (β2d2) tan (β3d3)− Z2

1Z2 tan (β3d3) tan (β1d1) , (7)
c0 = −i Z2

1Z2Z3 tan (β1d1)− i Z2
3Z2Z1 tan (β3d3)

−iZ2
2Z1Z3 tan (β2d2)+iZ2

2Z2
1 tan(β1d1) tan(β2d2) tan(β3d3) . (8)

Introducing β̄ = n1 sin(θ1) as tangential effective index, which is
constant in all layers and also

β1 = n1k0 cos (θ1) = k0u, U = β1d1 = k0ud1, (9)
β2 = k0v, V = β2d2 = k0vd2, (10)
β3 = k0w, W = β3d3 = k0wd3. (11)

The input impedance in each layer is

Z1 =

{
Z0 cos(θ1)

n1
= Z0u

n2
1

‖
Z0

cos(θ1)n1
= Z0

u ⊥ , Z2 =

{
Z0 cos(θ2)

n2
= Z0v

n2
2

‖
Z0

cos(θ2)n2
= Z0

v ⊥ ,

Z3 =

{
Z0 cos(θ3)

n3
= Z0w

n2
3

‖
Z0

cos(θ3)n3
= Z0

w ⊥ . (12)

where ⊥ and ‖, denote to perpendicular and parallel polarizations,
respectively. Introducing the parameters

u =
√

n2
1 − β̄2, v =

√
n2

2 − β̄2, w =
√

n2
3 − β̄2, (13)
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The coefficients in Equations (6)–(8) for TE waves are

a0 = −iZ2
0a1⇒a1 =−tan(V)

uw
− tan(U)

vw
− tan(W)

uv

+
tan(U) tan(V) tan(W)

w2
⊥, (14)

b0 = −Z3
0b1⇒b1 =−tan(V) tan(U)

v2w
− tan (V ) tan (W)

uv2

−tan(W) tan(U)
vw2

+
tan (V ) tan (U)

u2w
+

tan (V ) tan (W )
uw2

+
tan (W ) tan (U)

u2v
⊥, (15)

c0 = iZ4
0c1⇒c1 =−tan(U)

u2vw
− tan(W)

uvw2
− tan(V)

uv2w

+
tan(V) tan(W) tan(U)

u2v2
⊥. (16)

and for TM waves are

a0 = −iZ2
0 ã1 ⇒ ã1 =−tan(V ) wu

n2
3n

2
1

−tan(U) wv

n2
3n

2
2

−tan(W ) uv

n2
1n

2
2

+
w2 tan (V ) tan (W ) tan (U)

n4
3

‖, (17)

b0 = −Z3
0 b̃1⇒ b̃1 =−tan(V) tan(U)wv2

n2
3n

4
2

−tan(V) tan(W) uv2

n4
2n

2
1

−tan (U) tan (W ) vw2

n2
2n

4
3

+
tan (V ) tan (U) wu2

n2
3n

4
1

+
tan (U) tan (W ) vu2

n2
2n

4
1

+
tan (V ) tan (W ) uw2

n2
1n

4
3

‖, (18)

c0 = iZ4
0 c̃1 ⇒ c̃1 = −vwu2 tan (U)

n4
1n

2
2n

2
3

− vuw2 tan (W )
n2

1n
2
2n

4
3

−uwv2 tan (U)
n2

1n
4
2n

2
3

+
v2u2 tan (U) tan (V ) tan (W )

n4
1n

4
2

‖ . (19)

Hence, the input impedances for both TE and TM waves are




Zin = −iZ0
b1+
√

b21−4a1c1
2a1

⊥

Zin = −iZ0
b̃1+
√

b̃21−4ã1c̃1
2ã1

‖
. (20)
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3. CALCULATING BAND GAP FROM INPUT
IMPEDANCE

The input impedance method which has been discussed in the previous
section is an exact method to investigate planar multilayer structures.
Let us consider a 1D dielectric PCW has a geometry as shown in
Figure 1 with properties of material structure n1 = 1, n2 = 1.45
and n3 = 3.5; d1 = d2 = d3 = a = 1µm. Variations of the real
and imaginary parts of Zin of this system versus two wavelengths
λ = 1.5µm and λ = 1.55µm for the case of perpendicular polarization
and the ‘-’ solution of (5) which is normalized with Z0, is depicted in
Figure 2.

In this figure, we see that in some regions (approximately 0–24,
42–62 and 71–90 degrees in part (a) and 0–7, 35–55 and 65–90 degrees
in part (b)), the real part of Zin is zero. Therefore, the reflection
coefficient which is defined in (1) must have an absolute value equal to
one.

4. CALCULATION OF BAND GAP FROM TRANSFER
MATRIX METHOD

One of the methods to investigate a 1D photonic crystal is transfer
matrix method [19–21] which is applicable to calculate transmission
and reflection of these structures. We use it to obtain the reflectance
of this system and compare it with input impedance. Using transfer

(a) (b)

z /zin 0( )Real
z /zin 0( )Imag

z
/z

in
0

(
)

/z( )Real

z /zin 0( )Imag

zin 0

impedance vs. θ1

λ=1.50e-006
impedance vs. θ1

λ=1.55e-006

z
/z

in
0

(
)

θ1 (in degrees)θ1 (in degrees)

.

Figure 2. Real and imaginary parts of normalized input impedance
of a periodic dielectric structure at two wavelengths. (a) λ = 1.5µm.
And (b) λ = 1.55µm.
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matrix method, we show the reflectance of the previous system vs.
incident angle in Figure 3. For each specific wavelength, there are
some angle intervals for which band gaps occur.

We can see that for some ranges of angles, real part of (Zin/Z0)
is zero in Figure 2. If we compare these regions in Figure 2 with their
correspondent’s in Figure 3, we can observe that exactly anywhere the
real part of input impedance is zero, the band gap occurs.

5. COMPARING WITH REFLECTANCE AND BAND
STRUCTURE

In order to confirm our claim, we compare |Re (Zin) | with reflectance
and band gap structure. First, we compare |Re (Zin) | with reflectance.

Figure 3. Reflectances of system of Figure 2 at two wavelengths.

Figure 4. Comparing reflectance (solid line) and real part of
normalized input impedance (×100) (dash dotted lines) of system of
Figure 2(b).
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Figure 5. Comparing Reflectance (solid line) and band structures
(dash dotted lines) of system of Figure 2(b)

|Re (Zin) | and reflectance of system of Figure 2(b) are shown in
Figure 4 simultaneously. Here, it is well displayed that everywhere
the real part of input impedance is zero, the reflectance of that system
is one and band gap occurs.

Second, in Figure 5, we have shown a couple of comparative plots
of band structures and reflectivity of a semi-infinite periodic dielectric
structure of Figure 2(b). It can be observed that they are completely
compatible.

6. CONCLUSION

Photonic crystal waveguides can guide waves without total internal
reflection which has some losses due to transmission of wave in a
dielectric medium. In this paper, we use air as the core of a 1D planar
TPC waveguide and simulate it with a lossless reciprocal transmission
line. Using the input impedance of the system, we calculated angle
regions of incident wave in which band gaps occur. Thus, wherever
real part of input impedance is zero, transfer matrix method and band
structure confirm these regions as PBG precisely.
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