Vol. 122
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-11-14
Compact Hybrid Coaxial Architecture for 3 GHz -10 GHz UWB Quasi-Optical Power Combiners
By
Progress In Electromagnetics Research, Vol. 122, 77-92, 2012
Abstract
Tray-type quasi-optical (QO) power combiners are able to combine the high- and medium-output power of QO systems with the well-known advantages of pulsed ultra-wideband (UWB) systems. In this work, an alternative low-profile tray-type passive structure for 3 GHz-10 GHz power combining is proposed. The purpose of the proposed solution is to reduce the physical size with respect to other existing architectures by using hybrid coaxial lines. In spite of the reduced size, the structure maintains ultra-wideband operation and high combining efficiency, as proved through measurements. Therefore, the proposed structure is suitable for integration with monolithic microwave integrated circuit (MMIC) amplifiers for medium- and high-power generation, depending on the type of MMICs which are integrated into the passive combiner. Numerical analyses of the designed power combiner integrated with some MMIC amplifiers reveal its benefits in terms of increased output power and wider dynamic range compared to isolated MMICs.
Citation
Ivan Russo, Luigi Boccia, Giandomenico Amendola, and Hermann Schumacher, "Compact Hybrid Coaxial Architecture for 3 GHz -10 GHz UWB Quasi-Optical Power Combiners," Progress In Electromagnetics Research, Vol. 122, 77-92, 2012.
doi:10.2528/PIER11101704
References

1. AlShehri, S. A., S. Khatun, A. B. Jantan, R. S. A. Raja Abdullah, R. Mahmood, and Z. Awang, "Experimental breast tumor detection using Nn-based UWB imaging," Progress In Electromagnetics Research, Vol. 111, 447-465, 2011.
doi:10.2528/PIER10110102

2. Lazaro, A., D. Girbau, and R. Villarino, "Analysis of vital signs monitoring using an IR-UWB radar," Progress In Electromagnetics Research, Vol. 100, 265-284, 2010.
doi:10.2528/PIER09120302

3. AlShehri, S. A., S. Khatun, A. B. Jantan, R. S. A. Raja Abdullah, R. Mahmood, and Z. Awang, "3D experimental detection and discrimination of malignant and benign breast tumor using Nn-based UWB imaging," Progress In Electromagnetics Research, Vol. 116, 221-237, 2011.

4. Fullerton, L. W., Spread spectrum radio transmission system, US Patent 4,641,317, 1987.

5. McEwan, T. E., Ultra-wideband radar motion sensor, US Patent 5,361,070, 1994.

6. Daniels, D. J. and I. O. E. Engineers, Ground Penetrating Radar, IET, 2004.

7. Mink, J. W., "Quasi-optical power combining of solid state millimeter-wave sources," IEEE Trans. Microw. Theory Tech., Vol. 34, 273-279, 1986.
doi:10.1109/TMTT.1986.1133322

8. Kim, M., et al. "A grid amplifier," IEEE Microw. Guided Wave Lett., Vol. 1, 322-324, 1991.
doi:10.1109/75.93899

9. Cheung, C. T., M. P. De Lisio, J. J. Rosenberg, R. Tsai, R. Kagiwada, and D. B. Rutledge, "A single chip two-stage W-band grid amplifier," IEEE MTT-S Int. Microw. Symp. Dig., Vol. 1, 79-82, 2004.

10. Russo, I., L. Boccia, G. Amendola, G. Di Massa, and P. S. Hall, "Simple model for the parametric analysis of grid amplifiers," IET Microw., Ant. Prop., Vol. 3, No. 5, 877-881, Aug. 2009.
doi:10.1049/iet-map.2008.0252

11. Tsai, H. S., M. J. W. Rodwell, and R. A. York, "Planar amplifier array with improved bandwidth using folded slots," IEEE Microw. Guided Wave Lett., Vol. 4, 112-114, 1994.
doi:10.1109/75.282576

12. Marshall, T., M. Forman, and Z. Popovic, "Two Ka-band quasi-optical amplifier arrays," IEEE Trans. Microw. Theory Tech., Vol. 47, 2568-2573, 1999.
doi:10.1109/22.809008

13. Ortiz, S. C., J. Hubert, L. Mirth, E. Schlecht, and A. Mortazawi, "A high-power Ka-band quasi-optical amplifier array," IEEE Trans. Microw. Theory Tech., Vol. 50, 487-494, 2002.
doi:10.1109/22.982228

14. Russo, I., L. Boccia, G. Amendola, and G. Di Massa, "Simplified design flow of quasi-optical slot amplifiers," Progress In Electromagnetics Research, Vol. 96, 347-359, 2009.
doi:10.2528/PIER09072807

15. Bundy, S. C. and Z. B. Popovic, "A generalized analysis for grid oscillator design," IEEE Trans. Microw. Theory Tech., Vol. 42, 2486-2491, 1994.
doi:10.1109/22.339786

16. Deckman, B., D. Rutledge, J. J. Rosenberg, E. Sovero, D. S. Deakin, and Jr., "A 1watt 38 GHz monolithic grid oscillator," IEEE MTT-S Int. Microw. Symp. Dig., Vol. 3, 1843-1845, 2001.

17. Zhang, G., H. Zhang, Z. Wang, and Z. Yuan, "Improvements in a 4-elements high gain directional UWB antenna array," J. Electromagn. Waves and Appl., Vol. 24, No. 4, 453-461, 2010.

18. Song, H., M. Bialkowski, and P. Kabacik, "Parameter study of a broadband uniplanar quasi-Yagi antenna," 13th Int. Conf. Microw., Radar Wireless Commun., MIKON, Vol. 1, 166-169, 2000.

19. Cheng, N.-S., P. Jia, D. B. Rensch, and R. A. York, "A 120-watt X-band spatially combined solid-state amplifier," IEEE Trans. Microw. Theory Tech., Vol. 47, 2557-2561, Dec. 1999.
doi:10.1109/22.809006

20. Alexanian, A. and R. A. York, "Broadband waveguide-based spatial combiner," IEEE MTT-S Int. Microw. Symp. Dig., Vol. 3, 1139-1142, 1997.

21. Jia, P., L. Y. Chen, A. Alexanian, and R. York, "Multioctave spatial power combining in oversized coaxial waveguide," IEEE Trans. Microw. Theory Tech., Vol. 50, 1355-1360, 2002.

22. Wu, K., D. Deslandes, and Y. Cassivi, "The substrate integrated circuits --- a new concept for high-frequency electronics and optoelectronics," 6th Int. Conf. Telecommun. Modern Satell., Cable Broadcast. Service, TELSIKS, Vol. 1, P-III-P-X, 2003.

23. Hu, G., C.-J. Liu, L. Yan, K.-M. Huang, and W. Menzel, "Novel dual mode substrate integrated waveguide band-pass filters," J. Electromagn. Waves and Appl., Vol. 24, No. 11-12, 1661-1672, 2010.
doi:10.1163/156939310792149768

24. Chen, T., "Determination of the capacitance, inductance, and characteristic impedance of rectangular lines," IEEE Trans. Microw. Theory Tech., Vol. 8, No. 5, 510-519, 1960.
doi:10.1109/TMTT.1960.1124779

25. CST Microwave Studior, CST Computer Simulation Tech. AG.

26. Shin, J. and D. Schaubert, "A parameter study of stripline-fed Vivaldi notch-antenna arrays," IEEE Trans. Antennas Propag., Vol. 47, No. 5, 879-886, 1999.
doi:10.1109/8.774151

27. Agilent ADSr, Agilent Technologies Inc..