Vol. 37
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-12-12
Characterization of Defect Modes in Onedimensional Ternary Metallo-Dielectric Nanolayered Photonic Crystal
By
Progress In Electromagnetics Research B, Vol. 37, 125-141, 2012
Abstract
We investigate the characterization of defect modes in one-dimensional ternary symmetric metallo-dielectric photonic crystal (1DTSMDPC) band-gap structures. We consider the defect modes for symmetric model with respect to the defect layer. We demonstrate reflectance with respect to the wavelength and its dependence on different thicknesses and indices of refraction of dielectric defect layer, angle of incidence and number of periods for both transverse electric (TE) and transverse magnetic (TM) waves. Also, we investigate properties of the defect modes for different metals. Our findings show that the photonic crystal (PC) with defect layer, made of two dielectrics and one metallic material, leads to different band-gap structures with respect to one dielectric and one metallic layer. There is at least one defect mode when we use dielectric or metallic defect layer in symmetric structure. And, the number of defect modes will be increased by the enhancement of refractive index and thickness of dielectric defect layer.
Citation
Abdolrasoul Gharaati, and Hadis Azarshab, "Characterization of Defect Modes in Onedimensional Ternary Metallo-Dielectric Nanolayered Photonic Crystal," Progress In Electromagnetics Research B, Vol. 37, 125-141, 2012.
doi:10.2528/PIERB11101410
References

1. Sakoda, K., "Optical Properties of Photonic Crystals," Springer-Verlag, Berlin, 2001.

2. Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton, NJ, 1995.

3. Dastmalchi, B., R. Kheradmand, A. Hamidipour, A. Mohtashami, K. Hingerl, and J. Zarbakhsh, "Local dispersion of guiding modes in photonic crystal waveguide interfaces and hetero-structures," Progress In Electromagnetics Research B, Vol. 26, 39-52, 2010.
doi:10.2528/PIERB10050104

4. Noda, S., M. Imada, M. Okano, S. Ogawa, M. Mochizuki, and A. Chutinan, "Semiconductor three-dimensional and two-dimensional photonic crystals and devices," IEEE J. Quantum Electron., Vol. 38, 726-735, 2002.
doi:10.1109/JQE.2002.1017582

5. Inoue, K. and K. Ohtaka, Photonics Crystals: Physics, Fabrication and Applications, Springer-Verlag, Berlin, Heidelberg, 2004.

6. Gharaati, A. and Z. Zare, "Photonic band structures and enhacement of omnidirectional reflection bands by using a ternary 1D photonic crystal including left-handed materials," Progress In Electrimagnetic Research M, Vol. 20, 81-94, 2011.
doi:10.2528/PIERM11070711

7. Guida, G., "Numerical studies of disordered photonic," Progress In Electromagnetics Research, Vol. 41, 107-131, 2003.
doi:10.2528/PIER02010805

8. Szipocs, R., K. Ferencz, C. Spielmann, and F. Krausz, "Chirped multilayer coatings for broadband dispersion control in femtosecond lasers ," Optics Letters, Vol. 19, No. 3, 201-203, 1994.
doi:10.1364/OL.19.000201

9. Han, P. and H. Z. Wang, "Extension of omnidirectional reflection range in one-dimensional photonic crystals with staggered structure ," J. Opt. Soc. Am. B, Vol. 20, No. 9, 1996-2001, 2003.
doi:10.1364/JOSAB.20.001996

10. Usievich, B. A., A. M. Prokhorov, and V. A. Sychugov, "A photonic-crystal narrow-band optical filter," Laser Physics, Vol. 12, No. 5, 898-902, 2002.

11. Chen, D., M.-L. V. Tse, and H.-Y. Tam, "Super-lattice structure photonic crystal fiber," Progress In Electromagnetic Research M, Vol. 11, 53-64, 2010.
doi:10.2528/PIERM09120701

12. Srivastava, R., K. B. Thapa, S. Pati, and S. P. Ojha, "Omni-direction reflection in one dimensional photonic crystal," Progress In Electromagnetics Research B, Vol. 7, 133-143, 2008.
doi:10.2528/PIERB08020601

13. Wang, X., X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, "Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures ," Appl. Phys. Lett., Vol. 80, 4291-4293, 2002.
doi:10.1063/1.1484547

14. Fink, Y., J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and L. E. Thomas, "A dielectric omnidirectional reflector," Science, Vol. 282, 1679-1682, 1998.
doi:10.1126/science.282.5394.1679

15. Yablonovitch, E., "Inhibited spontaneous emission in solid state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059

16. John, S., "Strong localization of photons in certain disordered lattices ," Phys. Rev. Lett., Vol. 58, 2489, 1987.

17. Yeh, P., Optical Waves in Layered Media, Wiley, New York, 2005.

18. Tang, K., Y. Xiang, and S.Wen, "Tunable transmission and defect mode in one-dimensional ternary left-handed photonic crystal," Proc. of SPIE, 60200S.1-60200S.7(6020), 2005.

19. Skorobogatiy, M. and J. Yang, Fundamentals of Photonic Crystal Guiding, 132, Cambridge University Press, 2009..

20. Qi, L..-M. and Z. Yang, "Modified plane wave method analysis of dielectric plasma photonic crystal," Progress In Electromagnetics Research, Vol. 91, 319-332, 2009.
doi:10.2528/PIER09022605

21. Jackson, J. D., Classical Electrodynamics, 3rd Ed., 311-313, California University, 1999.

22. Wu, C.-J., Y.-H. Chung, B.-J. Syu, and T.-J. Yang, "Band gap extension in a one-dimensional ternary metal-dielectric photonic crysta," Progress In Electromagnetics Research, Vol. 102, 81-93, 2010.
doi:10.2528/PIER10012004

23. Srivastava, R., S. Srivastava, and S. P. Ojha, "Negative reflection by photonic crystal," Progress In Electromagnetics Research B, Vol. 2, 15-26, 2008.
doi:10.2528/PIERB08042302

24. Topasna, D. M. and G. A. Topasna, "Numerical modeling of thin film optical filters," J. Opt. Soc. Am. A, 2009.

25. Awasthi, S. K., U. Malaviya, and S. P. Ojha, "Enhancement of omnidirectional total-reflection wavelength ranges by using one-dimensional ternary photonic bandgap material," J. Opt. Soc. Am. B: Optical Physics, Vol. 23, 2566-2571, 2006.
doi:10.1364/JOSAB.23.002566

26. Awasthi, S. K. and S. P. Ojha, "Design of a tunable optical filter by using a one-dimensional ternary photonic ban gap material," Progress In Electromagnetics Research M, Vol. 4, 117-132, 2008.
doi:10.2528/PIERM08061302

27. Born, M. and E. Wolf, Principles of Optics, Cambridge, London, 1999.

28. Saleh, B. E. A. and M. C. Teich, Fundamentals of Photonics, 244, Wiley, New York, 2007.

29. Orfanidis, S. J., Electromagnetic Waves and Antennas, Rutgers University, 2008, www.ece.rutgers.edu/orfanidi/ewa.

30. Markos, P. and C. M. Soukoulis, Wave Propagation: From Electrons to Photonic Crystals and Left Handed Materials, Princeton University Press, New Jersey, 2008.

31. Marquez-Islas, R., B. Flores-Desirena, and F. Perez-Rodriguez, "Exciton polaritons in one dimensional metal-semiconductor photonic crystal," J. Nanosci. Nanotechnol., Vol. 8, 6584-6588, 2008.