Vol. 22
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-11-30
Propagation of Electromagnetic Fields in Near and Far Zones: Actualized Approach with Non-Zero Trace Electro-Magnetic Energy-Momentum Tensor
By
Progress In Electromagnetics Research M, Vol. 22, 57-72, 2012
Abstract
The present work is motivated by our recent experimental results [2-4] that indicate on anomalously small retardation of bound (or velocity-dependent) electromagnetic (EM) fields in the near zone of an emitter, whereas in the far zone the retardation tends to the standard value determined by the velocity of light c. Such anomaly is specific only for bound field component, while EM radiation has the constant propagation velocity c in the entire space. One possible explanation of these experimental results can be linked to our earlier finding [6, 8] that conventional EM energy-momentum (EMEM) tensor describes bound and radiative EM fields only in spatial regions free of charges and currents. In this work we show that an additional term has to be included into the standard EMEM tensor in order to make viable the description of the whole system of ``charges plus fields". Such approach to the EMEM tensor actually admits anomalously small retardation of bound EM fields in regions very close to a field source, providing the standard propagation in the far zone. Some special implications are also discussed.
Citation
Alexander L. Kholmetskii, Oleg V. Missevitch, R. Smirnov-Rueda, and Tolga Yarman, "Propagation of Electromagnetic Fields in Near and Far Zones: Actualized Approach with Non-Zero Trace Electro-Magnetic Energy-Momentum Tensor," Progress In Electromagnetics Research M, Vol. 22, 57-72, 2012.
doi:10.2528/PIERM11101407
References

1. Teitelboim, C. and D. Villarroel, "Classical electrodynamics of retarded fields and point particles," R. Nuovo Cimento, Vol. 3, No. 9, 1, 1980.
doi:10.1007/BF02895735

2. Kholmetskii, A. L., O. V. Missevitch, R. Smirnov-Rueda, R. Ivanov, and A. E. Chubykalo, "Experimental test on the applicability of the standard retardation condition to bound magnetic fields," J. Appl. Phys., Vol. 101, No. 2, 023532, 2007.
doi:10.1063/1.2409771

3. Kholmetskii, A. L., O. V. Missevitch, and R. Smirnov-Rueda, "Measurement of propagation velocity of bound electromagnetic fields in near zone," J. Appl. Phys., Vol. 102, 013529, 2007.
doi:10.1063/1.2749415

4. Missevitch, O. V., A. L. Kholmetskii, and R. Smirnov-Rueda, "Anomalously small retardation of bound (force) electromagnetic fields in antenna near zone," Europhys. Let., Vol. 93, 64004, 2011.
doi:10.1209/0295-5075/93/64004

5. Landau, L. D. and E. M. Lifshitz, The Classical Theory of Fields, Addison-Wesley, Cambridge, 1951.

6. Kong, J. A., Electromagnetic Wave Theory, Wiley, 1990.

7. Balanis, C., Antenna Theory, Analysis and Design, Wiley, 1997.

8. Sten, J. C.-E. and A. Hujanen, "Aspects on the phase delay and phase velocity in the electromagnetic near field," Progress In Electromagnetics Research, Vol. 56, 67-80, 2006.
doi:10.2528/PIER05051201

9. Kholmetskii, A. L., "On `gauge renormalization' in classical electrodynamics," Found. Phys., Vol. 36, 715, 2006.
doi:10.1007/s10701-005-9039-3

10. Kholmetskii, A. L., O. V. Missevitch, and T. Yarman, "Continuity equations for bound electromagnetic field and the electromagnetic energy-momentum tensor," Phys. Scr., Vol. 83, 055406, 2011.
doi:10.1088/0031-8949/83/05/055406

11. Kholmetskii, A. L., "Gauge renormalization in classical electrodynamics: Phenomenological description of the classical electron," Found. Phys. Lett., Vol. 19, 695, 2006.
doi:10.1007/s10702-006-1058-8

12. Weinberg, S., The Quantum Theory of Fields, Vol. 1, Foundations, Cambridge University Press, 1995.

13. Field, J. H., "Quantum electrodynamics and experiment demonstrate the nonretarded nature of electrodynamical force fields," Physics of Particles and Nuclei Letters, Vol. 6, 320, 2009.
doi:10.1134/S1547477109040062