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Abstract—The present work is motivated by our recent experimental
results [2–4] that indicate on anomalously small retardation of bound
(or velocity-dependent) electromagnetic (EM) fields in the near zone
of an emitter, whereas in the far zone the retardation tends to the
standard value determined by the velocity of light c. Such anomaly
is specific only for bound field component, while EM radiation has
the constant propagation velocity c in the entire space. One possible
explanation of these experimental results can be linked to our earlier
finding [6, 8] that conventional EM energy-momentum (EMEM) tensor
describes bound and radiative EM fields only in spatial regions free of
charges and currents. In this work we show that an additional term
has to be included into the standard EMEM tensor in order to make
viable the description of the whole system of “charges plus fields”.
Such approach to the EMEM tensor actually admits anomalously small
retardation of bound EM fields in regions very close to a field source,
providing the standard propagation in the far zone. Some special
implications are also discussed.
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1. INTRODUCTION

According to the modern standpoint on EM field structure there
are two components with different dependence on a distance form
the source: velocity-dependent (bound) component falls off usually
as inverse square of a distance R whereas acceleration-dependent
(radiation) fields fall off as R−1. As a consequence, bound fields are
dominant within the near zone (R < λ

2π , where λ is EM radiation
wavelength) and EM radiation components prevail in the far zone
(R > λ

2π ). However, it should be specially noted that the energy
transmission velocity of EM fields turns out to be scarcely studied on
empirical level within the regions very close to the source. Strangely
enough this fundamental gap seems to have troubled nearly no one
up to present days even though just the extrapolation of classical EM
fields to very small distances leads to well-known infinities within the
framework of classical electrodynamics.

In fact, it is generally recognized that the origin of these difficulties
can be traced to that part of EM field which is not related to the
radiation but remains bound to the source (velocity-dependent EM
fields). The latter part contains self-interaction and eventually leads
to the infinities of self-energy that can be removed by re-normalization
procedures. Hence it appears that the first logical step in treating
the above-mentioned problems is a decomposition of EM field in two
parts: velocity and acceleration dependent components, respectively.
As a result, the energy-momentum tensor can be identified with respect
to both parts with no ambiguity [1] and it provides the study of
EM energy-momentum relation as close to the source as desired up
to quantum limits. It is obvious that this relationship should be
compatible with observable properties of bound velocity-dependent
EM fields (dominant in the near zone), including its propagation
velocity, which is commonly assumed to be equal to c, but without
a special rigorous experimental confirmation.

Only very recently we proposed an experimental approach for the
measurement of propagation velocity of bound EM field component [2–
4], as a response to the above-mentioned lack of empirical information
on EM field propagation properties very close to the source. Several
procedures implemented in [2–4] provided unambiguous identification
of retarded positions of bound EM fields on the time scale as functions
of a distance R from the emitting source. Contrarily to CED
predictions, a negligible retardation of bound EM fields was observed
in the near zone whereas at larger distances (the far zone) bound field
had already standard propagation velocity c equal to that of radiation
fields.
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Thus, in contrast to the well-known CED prediction, bound EM
field nearly have no retardation in the near zone. To be more specific,
the latest experimental results [4] indicated that an area of anomalously
small retardation of bound EM field can be scaled exactly as the near
zone size in an emitting antenna for different current frequencies. In
Fig. 3 of Ref. [4] the retardation of bound EM field is plotted versus
the distance between emitting and receiving antennas for three different
current frequencies corresponding to three different near zone sizes Rn.
It shows that the region of anomalously small retardation is about
0.6Rn, whereas at distances larger than ≈ 1.5Rn the retardation of
bound EM field becomes standard.

Being at odd with the conventional CED viewpoint on EM field
propagation (see, for instance [5–8]), these experimental results need
theoretical interpretation. In the present work we propose a possible
explanation based on the analysis of EM energy-momentum (EMEM)
tensor and corresponding conservation laws. We start with this
analysis since the standard expression for symmetric EMEM tensor
(see e.g., [5]) as well as corresponding conservation laws for EM field
seem to be in no way compatible with the dependence shown in Fig. 3
of Ref. [4]. In view of this incompatibility, in the next Section 2 we first
come across the inconsistency present in the conventional derivation of
the symmetric EMEM tensor, which, in fact, restricts its application
only to spatial regions with no charges and currents. Removing this
limitation leads us to the generalized form of EMEM tensor entirely
applicable to the general case of the whole system of “particles plus
their fields”. In Section 3 we will show that for dominant bound
EM field (i.e., in regions very close to a field source) the generalized
EM energy-momentum tensor admits additional gauge modification,
providing the elimination of the divergent terms present in the standard
CED framework (infinite self-energy, infinite self-force). As we will see,
it also allows the absence of retardation for bound EM field (i.e., the
zero slope of retardation curves in Fig. 3 of Ref. [4]). In Section 4
we will consider the general case: EM field as a superposition of
bound and radiative contributions. It will be shown that in the far
zone, where radiative EM fields prevail, the generalized EM energy-
momentum tensor yields the standard continuity equation (Poynting
theorem), hence implying equal propagation (retardation) rates for
both bound and radiative EM field components. It is also in line with
the experimental data of [4], since the retardation curves of bound
EM fields asymptotically approaches the standard retardation slope
at large distances (far zone). Given interpretations, as well as some
specific views on CED structure based on recent experimental data [2–
4] will be discussed in Section 4.
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2. GENERALIZED ELECTROMAGNETIC ENERGY-
MOMENTUM TENSOR FOR A SYSTEM OF CHARGED
PARTICLES

In this section we show the EMEM tensor derivation, removing
limitations present in the conventional approach. It already had been
discussed in [9, 10] and for the readers convenience we will reproduce
here only main results.

We start our analysis with the canonical EM energy momentum
(EMEM) tensor written in its standard form [5]:

Tµν
EM = − 1

4π
(∂µAγ)F ν

γ +
1

16π
gµνFγαF γα, (1)

where Fµν = ∂µAν − ∂νAµ is the tensor of EM field; Aµ is the four-
potential; gµν is the metric tensor; µ, ν = 0, 1, 2, 3.

In order to transform Eq. (1) into a symmetric form (which is
only meaningful for spinless classical charges), the following gauge
transformation has to be applied for tensor entities:

Tµν → Tµν + ∂γΨµνγ , (2)

where Ψµνγ satisfies the requirement Ψµνγ = −Ψµγν .
If we choose Ψµν

γ as

Ψµν
γ =

1
4π

AµF ν
γ , (3)

then we can explicitly calculate the derivative

∂γΨµν
γ =

1
4π

(∂γAµ)F ν
γ +

1
4π

Aµ
(
∂γF ν

γ

)
. (4)

Further, using homogeneous Maxwell’s equation

∂γF νγ = 0 (5)

and combining Eqs. (1), (2), (4) and (5), we arrive at symmetric
representation of the EMEM tensor:

Tµν
EM =

1
4π

(
−FµγF ν

γ +
1
4
gµνFγαF γα

)
. (6)

Now we point out a restriction related to the standard derivation
of EMEM tensor (6): it is based on the homogeneous Maxwell
Eq. (5), which, in general, is not valid for systems that include charged
particles. Hence the extension of Eq. (6) to the general case of fields
plus particles is not fully justified in the framework of the standard
CED. To extend the description to systems with charges, one ought
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to require the compatibility of EMEM tensor with inhomogeneous
Maxwell’s equation

∂γF νγ = −4π

c
jν . (7)

As a result, in order to get a symmetric EMEM tensor for a system
with charges, the corresponding gauge transformation (3) should be
based on Eq. (7) instead of Eq. (5), providing that [9]

Tµν
EM =

1
4π

(
−FµγF ν

γ +
1
4
gµνFγαF γα

)
− 1

c
Aµjν . (8)

This modified form of EMEM tensor (8) differs from the
conventional one (6) by the additional term Aµjν , which, in general,
is not symmetric, when the four-potential Aµ and four-current jν are
taken from the different source particles. Thus, in order to achieve
the symmetric representation of the tensor (8), we further assume that
in the product Aµjν both Aµ and jν are always issue from the same
charge, supplying this product by the subscript “pr” (proper). In this
case the four-potential Aµ is proportional to jµ, and the symmetry of
the term (Aµjν)pr is straightforward.

The Eq. (8) can be approached alternatively starting from the
definition of the energy-momentum tensor given by Hilbert (see
Appendix A).

For further analysis, it is convenient to separate the tensor (8) in
two complementary parts:

Tµν
EM = Tµν

(EM)in + Tµν
EEM, (9)

where we will refer

Tµν
(EM)in =

1
4π

(
−FµγF ν

γ +
1
4
gµνFγαF γα

)

in

(10)

as interaction part of EMEM tensor, where the first and second factors
in each of the products −FµνF ν

γ , FγαF γα correspond to different
particles, while in the tensor

Tµν
EEM =

1
4π

(
−FµγF ν

γ +
1
4
gµνFγαF γα

)

pr

− 1
c

(Aµjν)pr (11)

the products −FµνF ν
γ , FγαF γα are taken for the same charged

particle. In what follows, the tensor (11) will be regarded as Eigen
Electromagnetic energy-momentum (EEM) of a system of charged
particles.

The given expression for the symmetric EMEM tensor (8) and
its separation into two complementary parts (10), (11) has a general



62 Kholmetskii et al.

validity and is equally applicable to bound EM field, radiative EM field
and their combination. At the same time, this separation turns out
to be especially convenient for the case when only bound EM fields
are present, i.e., when EM radiation is absent. In the next Section we
will consider this particular case implying accelerations of all charged
particles as negligible and will show that the corresponding EMEM
tensor (8) can be subjected to an appropriate gauge transformation,
which allows elimination of the divergent terms in its structure and
logically brings into the absence of bound EM field retardation within
the near zone. It provides a basis for further analysis of the dependence
presented in Fig. 3 of Ref. [4].

3. VELOCITY-DEPENDENT (BOUND) EM FIELDS
AND ELECTROMAGNETIC MASS OF CLASSICAL
CHARGED PARTICLES

First of all, we remind that the total energy-momentum tensor Tµν

of any macroscopic system of charged particles has to be understood
as a sum of two parts: (1) EMEM tensor Tµν

EM and (2) mechanical
energy-momentum tensors Tµν

mech:

Tµν = Tµν
EM + Tµν

mech, (12)
where

Tµν
mech = m

dxµ

dt

dxν

dτ
, (13)

and m is a mechanical mass density.
Now we notice the important property of EMEM tensor (8): in

contrast to the conventional EMEM tensor (6), its trace is not equal
to zero due to the contribution (Aµjµ)pr. Hence using (8) we get a
possibility to describe the EM mass contribution into the total mass
of charged particle which in not viable using the standard tensor (6).

The EM mass tensor can be introduced by analogy with the
mechanical tensor (13) as

Tµν
EM mass = mEM

dxµ

dt

dxν

dτ
, (14)

here mEM is EM mass density to which is added the Poincaré stresses
tensor

Tµν
P = −mP

dxµ

dt

dxν

dτ
, (15)

where mP is the mass density associated with the energy of “Poincaré
stresses” necessary for the stability of the classical electron [10]. Thus
the total (observable) mass density of charged particle becomes

mt = m + mEM −mP (16)
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and as a consequence, the concept of EM mass acquires a special
significance when a system of charged particles produces bound EM
field alone. Since accelerations of all particles are negligible in this
case (implying their velocities to be constant during a sufficiently
large lapse of time), then the four-divergence of the total mass tensor
Tµν

mass = (m+mEM−mP )dxµ

dt
dxν

dτ should be vanishing. The same is also
valid for the EM mass tensor

∂µTµν
EM mass = ∂µmEM

dxµ

dt

dxν

dτ
= 0 (17)

due to independence of EM and mechanical masses. Moreover, for
non-radiating charges the four-divergence of Eigen EMEM tensor is
also equal to zero:

∂µTµν
EEM = 0. (18)

We stress here that the fact of zero divergence of two different
tensors ∂µTµν

EEM = 0 and ∂µTµν
EM mass = 0 implies the existence of some

tensorial gauge transformation (2) (there is no need here to determine
this gauge explicitly) which provides the mathematical relationship
between both tensors Tµν

EEM and Tµν
EM mass. Hence in the expression for

the generalized EMEM tensor (9), Tµν
EEM can be replaced by Tµν

EM mass:

Tµν
EM = mEM

dxµ

dt

dxν

dτ
+ Tµν

(EM)in. (19)

Without influencing its four-divergence. This procedure was named
in [9] as gauge renormalization.

Thus the total energy-momentum tensor Tµν can be written as
follows:

Tµν = (m + mEM −mP )
dxµ

dt

dxν

dτ
+ Tµν

(EM)in. (20)

where we highlight again that the suggested gauge renormalization
which leads to Eq. (20) is rigorously applicable only to bound EM
fields, i.e., when source particles move with constant velocities and
the equalities (17), (18) take place. Moreover, in the absence of EM
radiation one can define the total EM mass of a particle through
straightforward integration of EM mass density over the entire space.
Taking into account that any gauge transformation does not change
the total energy-momentum of a system, one immediately obtains an
explicit expression for a total mass difference MEM−MP of an isolated
classical charged particle at rest:

MEM −MP =
∫

V

(mEM −mP ) dV =
1
c2

∫

V

E2

8π
dV − 1

c2

∫

V

ρϕdV, (21)



64 Kholmetskii et al.

where V denotes the entire space domain; E is electric field produced
by a charged particle; ϕ is its scalar potential; ρ is particle’s charge
density.

The resulting Eqs. (20), (21) allow one to remove two divergent
terms usually present in the conventional classical EM theory. In
fact, charged particle self-forces due to its own bound EM fields do
not already take place since the interaction part of the total energy-
momentum tensor Tµν (20) is formed only by Tµν

(EM)in. On the other
hand, Eq. (21) for the difference of masses MEM−MP can take a finite
value even if the limit case r → 0 is considered (r denotes the radius
of a classical charged particle) [11].

It is of interest to compare internal structures of Eqs. (16)
and (21). The first term in rhs of Eq. (21) represents EM mass of
a charge with the density

mEM =
E2

8πc2
, (22)

(or 1
8πc2

(E2 + B2) in the case of a moving charge, where B is its
magnetic field), and the second term of rhs of Eq. (21) corresponds
to the mass parameter

MP =
1
c2

∫

V

ρϕdV, (23)

which is associated with Poincaré stresses. Thus, the mass density due
to Poincaré stresses is

mp =
ρϕ

c2
=

qϕ

c2
δ(r− r0), (24)

where q is the particle charge. For further convenience, we will take
the mechanical mass density of a point particle as

m = Mδ(r− r0), (25)

where M is mechanical mass; r0 and r are position vectors of a point-
particle and a point of observation, respectively.

Thus, combining Eqs. (16), (22) and (24), (25) we get explicitly
the total observable mass density mt of a charged particle:

mt =
(
M − ρϕ

c2

)
δ(r− r0) +

E2 + B2

8πc2
. (26)

Notice that according to the mathematical definition mEM =
1

8πc2
(E2 + B2), EM mass density is always distributed over the entire

space domain. Therefore, the circumstance that it is linearly added
to the mass density (M − ρϕ

c2
)δ(r− r0) localized at a point r0 means
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that, generally speaking, 1
8πc2

(E2 + B2) should be considered as some
rigid entity. From the physical viewpoint it is possible only in the case,
when the retardation of bound EM field is supposed to be negligible in
the entire space. This property appears as soon as the divergent self-
energy and self-interaction turn out to have been removed from the
standard CED framework according to the above general procedure.

Coming back to the definition of a mechanical mass which implies
contributions of non-electromagnetic nature, it is natural to consider
the mass density mp

qϕ
c2

δ(r− r0) of Poincaré stresses as some part of
the mechanical mass density of one individual charged particle. In
this case, the mechanical contribution Tµν

mech (13) into the total energy-
momentum tensor Tµν (12) can be extended as

Tµν
mech = (m−mP )

dxµ

dt

dxν

dτ
. (27)

As a consequence, we arrive at the final expression for the EMEM
tensor of a macroscopic system of N interacting charged particles,
producing bound EM field alone:

Tµν
EM = mEM

dxµ

dt

dxν

dτ
+ Tµν

(EM)in =
E2 + B2

8πc2

dxµ

dt

dxν

dτ
+ Tµν

(EM)in, (28)

where E and B are electric and magnetic fields produced by charged
particles.

For uniformly moving charges, EMEM tensor (28) can be
associated with a particular solution to Maxwell’s equations given by
Heaviside’s formula for electric and magnetic fields [5]:

E =
q
(
1− v2

c2

)
r

(
1− v2

c2
sin2 θ

)3/2
r3

; B =
1
c

(v ×E) (29)

where θ is polar angle; particle position vector r is a present time
function (implicit time dependence).

The expression (29) for EM fields of one uniformly moving charge
can be viewed as a particular case of Lienard-Wiechert solutions to
Maxwell’s equations that implies retardation of both bound (velocity-
dependent) and radiation (acceleration-dependent) components being
determined by the velocity of light (explicit time dependence). There
are well-known arguments to accept an apparent rigidity of electric
and magnetic fields (29) for uniformly moving charge as a mere
mathematical coincidence (with no special physical content) that
solution (29) can be expressed at present time coordinates (implicit
time dependence). By contrast, within the present framework, one
implies the absence of retardation of bound EM field in the entire
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space, otherwise, the definition of total mass of charged particle (26)
would have no physical meaning.

Finalizing the analysis of the case of purely bound EM field, it is
of interest to explore the equation of motion and continuity equation
generated by the tensor (28). In this respect we refer to our recent
work [10], where the same expression (28) for EMEM tensor had been
derived (though based on a different arguments). It had been shown
that the tensor (28) yields the standard equation motion of a charged
particle, where, however, the term of self-interaction in the proper
bound EM field is excluded. We also had shown that the tensor (28)
yields three different continuity equations respectively for the proper,
interaction and total EM energy density. For more details we refer the
reader to Ref. [10]. Here we only mention the fact that the form of
the continuity equation for proper EM energy coincides with the form
of the continuity equation used in fluid mechanics and the rate of EM
energy transfer turns out to be equal to the instant particle velocity.
This result reenforce again the viewpoint that bound EM fields (in
the absence of EM radiation) move rigidly with the particle with no
observable retardation. The above-discussed results are meaningful for
further qualitative analysis of the general case when arbitrarily moving
charged particles produce both bound and radiative EM fields.

4. ELECTROMAGNETIC FIELDS IN NEAR AND FAR
ZONES

Let us consider again an isolated system of charged particles with
their accelerations no longer negligible. EM fields generated by
particles have already both bound (velocity-dependent) and radiative
(acceleration-dependent) components with different dependence on a
distance r between a source charge and point of observation. We
remind that radiative components usually scale as r−1, while bound
component fall off as r−2 or faster. Thus, regardless any particular
relationship between velocities and accelerations of charges, there
always exist a spatial region close to a charged particle, where bound
EM fields are dominant within the near zone on which higher limit
the intensities of bound EM field and EM radiation are equal to each
other. At larger distance (intermediate zone) EM radiation prevails,
though the contribution of bound EM field remains essential. Finally,
at distances large enough (far zone), the relative intensity of bound
EM field becomes very small and one deals with EM radiation alone.
For charged particles under harmonic oscillations, and for wavelength
of EM field λ much larger than the size of the system of charges, the
boundary of near zone is determined by the relationship rn = λ/2π,
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the intermediate zone can be defined as the region λ/2π < r < λ, while
the far zone corresponds to the inequality r > λ.

Within the conventional CED framework different zones are
distinguished only by the relative intensities of bound and radiative
EM fields. However, as it was found in experimental works [2–4],
the actual situation is more complicated, and one needs to take into
account variation of retardation rates of bound EM field in different
spatial regions.

Let us assume that an observed retardation dependence of
bound EM field is directly related to the fact that a specific gauge
renormalization can be applied to the EMEM tensor (8) only within the
near zone (where bound fields are dominant). In fact, just in regions
very close to a source the gauge renormalization allows elimination of
divergent terms present in the conventional CED framework. More
specifically, this gauge renormalization is rigorously applicable only
for present time dependence of EM fields. For source charges moving
with constant velocities (see Eqs. (17), (18)) the near zone have an
infinite size and the present time dependence for bound EM field takes
place in the entire space. In the general case, according to the referred
experimental data [4], within the near zone bound EM fields show
present time dependence, providing the validity of the above-mentioned
renormalization procedure. On the other hand, it restricts the volume
of integration in the expression for EM mass MEM =

∫
V

mEMdV by the

size of the near zone.
Let us estimate a fraction of the total EM energy of a charged

particle (the classical electron) which lays inside the near zone. First
one needs to calculate approximately the near zone size of a radiating
classical electron. The smallest wavelength of EM radiation emitted by
an electron is determined by the Compton wavelength λc = h

m0c = 2πr0
α ,

where h is Plank’s constant, m0 is electron rest mass, r0 (about
10−13 m) is the classical radius of electron, and α = 1/137 is the fine
structure constant. This relationship reflects a well-known fact that
EM radiation with Compton’s wavelength has the total EM energy
just equal to electron rest energy, i.e., hν = m0c

2 = 511 keV. A
corresponding near zone size for this radiation wavelength is λc

2π = r0
α .

Hence, even for this limited wavelength of EM radiation, the electron
must feel rigidly more than 99% of its bound EM energy.

Thus, remaining within domains of applicability of classical
electrodynamics and assuming that the total EM energy is small
in comparison with the rest mass energy, one concludes that a
charged particle feels rigidly almost the entire bound EM field
energy. It provides a straightforward interpretation of its EM mass
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as a part of inertial mass. In other words, the above gauge re-
normalization procedure can be considered as a valid approximation
in regions close to source particles providing a sound treatment of
mass parameters related to classical radiating charges since it implies a
linear superposition of electromagnetic, mechanical and Poincaré mass
densities.

Following the same line of reasoning it becomes clear that the
gauge renormalization based on the equalities ∂µTµν

EEM = 0 and
∂µTµν

EM mass = 0 is not applicable within the far zone, where EM
radiation dominates. In this case we have to use the general
expression (8) for EMEM tensor in order to explore its physical
implications. Let us use it in the derivation of continuity equation

∂µTµ0 = 0 (30)

In connection with it we note that the appearance of the extra-
term−1

c (A
µjν)pr in Eq. (8) in comparison with the standard expression

for EMEM tensor (6) does not influence the conventional Poynting
theorem (e.g., Ref. [5]) derived on the basis of Eq. (30). This statement
follows from the fact that the four-divergence of time-like components
of the extra-term is equal to zero (see Appendix B).

Thus we conclude that the expression for the electromagnetic
energy-momentum tensor (8) should be valid in far zone and does
not imply any changes in the formulation of the standard Poynting
theorem. As a consequence both bound and radiative EM field
components should have the same propagation (or retardation) rates
determined by the velocity of light c. This conclusion strictly agrees
with the experimental data reported in [3, 4].

Finally, it can be added that the general expression (8) for EMEM
tensor yields the standard equation of motion just implying that the
mass of a charged particle is interpreted as its total observable mass
according to the definition (26) [10].

5. CONCLUSION

Having eliminated in the present work the inconsistency in the
derivation of the symmetric EMEM tensor (i.e., the use of homogeneous
Maxwell Eq. (5) for a system of charges) we obtained the general
expression (8) for EMEM tensor compatible with inhomogeneous
Maxwell Eq. (7). As a consequence it was possible to explain two
main features in the behavior of bound EM fields reported in the
recent experimental works [2–4]: (a) disappearance of bound EM field
retardation in regions close to a source (r → 0), and (b) asymptotic
approximation to the standard retardation in the far zone. This
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explanation involves the fact that a special gauge renormalization
turns out to be applicable to a general EMEM tensor only in spatial
regions close to a source particle. It allows an appropriate elimination
of infinite terms present in the conventional CED framework in a
mathematically correct way and not as a premeditate omission of
such terms which usually takes place in the standard renormalization
procedure. On one hand, it provides a solid interpretation for
anomalously small retardation observed for bound EM fields in the
near zone and, on the other, gives a real physical mechanism to how the
divergent terms for point-like charges can be eliminated: no retardation
of the bound EM fields in a close vicinity of a charge is required.

One can assume that a similar physical behavior may take place in
quantum electrodynamics (QED) in which framework the infinite self-
energy of the electron is also treated by the standard renormalization
procedure (e.g., [12]). In fact, it is well known in QED that real photons
(EM radiation) propagate at the light velocity c, whereas there are
some reasons to interpret the propagation of virtual photons as being
instantaneous (e.g., [13]).

Finally, we would like to stress that the present theoretical
approach is entirely motivated by experimental results [2–4] that
suggest a more complicated EM field properties than it is usually
implied in the conventional CED: the absence of retardation of bound
EM fields within the near zone and equality of propagation rates of
bound and radiation EM fields in the far zone. The main result of
the present work provides a qualitative explanations of bound EM
field retardation rate asymptotic behavior in the near and the far
zones. Nevertheless, a further more detailed exploration of these
issues is necessary. In particular, it would be of special interest to
proceed within a direct field approach for inhomogeneous EM wave
equation which solution requires two boundary conditions: at infinity
(vanishing fields) and on a source. However, the latter one is a
problematic issue in the conventional CED due to existent divergences.
The present tensorial approach attacks the problem in a way that
EM field propagation properties become compatible with the recent
experimental data. Further extension of this analysis to intermediate
zone will be considered elsewhere.
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APPENDIX A. GENERALIZED ELECTROMAGNETIC
ENERGY-MOMENTUM TENSOR VIA THE HILBERT
APPROACH

As known, the definition of the energy-momentum tensor given by
Hilbert [5] reads:

1
2
√−gTµν =

∂
√−gL

∂gµν
− ∂

∂xγ

∂
√−gL

∂(∂gµν/∂xγ)
, (A1)

where L is electromagnetic Lagrangian density. The conventional
classical electrodynamics provides the Lagrange function for EM field
L in explicit form as

L = − 1
16π

FγαF γα. (A2)

As a consequence, the standard representation (6) for the symmetric
EMEM tensor follows from (A1) if the definition (A2) is considered
as adequate. However, it should be especially stressed here that
expression (A2) for the Lagrangian density makes sense only for spatial
regions free of charged particles, which may include both EM radiation
and bound EM field. However, the latter component of EM field is
undividable from its source charges and therefore, the use of (A2)
(where the omission of the Lagrange density for source charges is
obvious) in the derivation of symmetric EMEM tensor can not be
considered as general since it is not applicable to the whole system
with charged particles.

Extending the approach to charges, one has to add into Eq. (A2)
a component responsible for interaction of charges with EM fields
(see [5]). It leads to the following expression for the Lagrangian
density of a whole system of “charged particles and EM field” as it
was suggested in [9]

L = −1
c
Aµjµ − 1

16π
FγαF γα. (A3)

The first term in rhs of Eq. (A3) might be referred as an interaction
part since it takes into consideration the presence of charged particles,
being responsible for interaction. By analogy, the second term can be
regarded as field part, which, in general, deals with both bound and
free EM field components. By substituting Eq. (A3) into Eq. (A1), we
again arrive at Eq. (8).
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APPENDIX B. PROOF OF THE EQUALITY
∂µ(AµJ0)P R=0

In order to prove this equality, we write the term (Aµj0) in the
factorized form, considering an isolated system of N > 1 charged
particles (in the units c = 1) and assuming the Lorenz gauge (∂µAµ =
0): (

Aµj0
)
pr

=
∑

k

A
(k)

µ j
(k)

0, (B1)

where k = 1, . . . , N is the particle index.
Hence

∂µ

∑

k

A
(k)

µ j
(k)

0=

(∑

k

∂µ A
(k)

µ

)
j

(k)

0+
∑

k

A
(k)

µ

(
∂µ j

(k)

0

)
=

∑

k

A
(k)

µ∂µ ρ
(k)

, (B2)

where ρ is the charge density. Taking into account that the four-
potential of each particle can be written in the form A

(k)

0 = ϕ
(k)

, A
(k)

i =

ϕ
(k)

vi

(k)
(ϕ being the scalar potential and vi is the velocity component,

i = 1 . . . 3), we further obtain

∑

k

A
(k)

µ∂µ ρ
(k)

=
∑

k

ϕ
(k)

∂ ρ
(k)

∂t
+

∑

k

ϕ
(k)

vi

(k)

∂ ρ
(k)

∂xi
=

∑

k

ϕ
(k)

d ρ
(k)

dt
= 0 (B3)

due to conservation of charge for each particle (i.e., dρ
dt = 0 for each k).

The latter equality proves that

∂µ

(
Aµj0

)
pr

= 0.
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