Vol. 123
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-01-03
Facet-Based Treatment on Microwave Bistatic Scattering of Three-Dimensional Sea Surface with Electrically Large Ship
By
Progress In Electromagnetics Research, Vol. 123, 385-405, 2012
Abstract
A feasible simulator, of which formulation and mechanism should be simple and time saving, is developed in this paper to overcome the difficulties of prediction on the EM scattering from three-dimensional (3-D) electrically very large ship-sea models. The work in this paper is twofold. First, the sea surfaces are supposed to be a combination of many locally-tilted slightly rough facets with two-scale profiles. The radar return from each local facet is associated to a semi-deterministic scheme which is established by combining the geometric optics limit of Kirchhoff Approximation (KA-GO) with the Bragg components of Bass-Fuks' two-scale model (BFTSM). Furthermore, we associate the complex reflective function of the respective facet by a so-called Phase-modified Facet Model (PMFM), in which the facet's phase is treated approximately as a combination of inherent part that follows a homogeneous random distribution and coherent part associated with the relative path-delay. Second, in companion with the semi-deterministic treatment of the sea scattering model, a hybrid approximate algorithm is proposed to deal with the composite scattering of electrically large ship-sea model, which is entirely evolved through facets (for the sea surface) and wedges (for the ship target). The method of equivalent currents (MEC) and a hybrid frame which combines the four path model (FPM) with the quasi-image method (QIM) are employed to calculate the scattering characteristics of the ship-like target and ship-sea interactions, respectively. The entire simulator is of comparatively significant computational efficiency, and suitable for providing a preliminary prediction on the instantaneous complex reflective functions and normalized radar cross sections (NRCS) mean levels for electrically very large ship-sea model.
Citation
Hui Chen, Min Zhang, and Hong-Cheng Yin, "Facet-Based Treatment on Microwave Bistatic Scattering of Three-Dimensional Sea Surface with Electrically Large Ship," Progress In Electromagnetics Research, Vol. 123, 385-405, 2012.
doi:10.2528/PIER11101108
References

1. Fabbro, V., "Apparent radar cross section of a large target illuminated by a surface wave above the sea," Progress In Electromagnetics Research, Vol. 50, 41-60, 2005.
doi:10.2528/PIER04050502

2. Luo, W., M. Zhang, Y.-W. Zhao, and H. Chen, "An efficient hybrid high-frequency solution for the composite scattering of the ship very large two-dimensional sea surface," Progress In Electromagnetics Research M, Vol. 8, 79-89, 2009.
doi:10.2528/PIERM09050103

3. Ji, W.-J. and C.-M. Tong, "Bistatic scattering from two-dimensional dielectric ocean rough surface with a PEC object partially embedded by using the G-SMCG method," Progress In Electromagnetics Research, Vol. 105, 119-139, 2010.
doi:10.2528/PIER10041101

4. Zhang, M., Y. W. Zhao, H. Chen, and W.-Q. Jiang, "SAR imaging simulation for composite model of ship on dynamic ocean scene," Progress In Electromagnetics Research, Vol. 113, 395-412, 2011.
doi:10.2528/PIER11071501

5. Bausssard, A., M. Rochdi, and A. Khenchaf, "PO/mec-based scattering model for complex objects on a sea surface," Progress In Electromagnetics Research, Vol. 111, 229-251, 2011.
doi:10.2528/PIER10083005

6. Jin, Y. Q. and Z. X. Li, "Numerical simulation of radar surveillance for the ship target and oceanic clutters in two-dimensional model," Radio Science, Vol. 38, No. 3, 1045, 2003.
doi:10.1029/2002RS002692

7. Yang, W., Z. Q. Zhao, C. H. Qi, W. Liu, and Z. P. Nie, "Iterative hybrid method for electromagnetic scattering from a 3-D object above a 2-D random dielectric rough surface," Progress In Electromagnetics Research, Vol. 117, 435-448, 2011.

8. Qi, C., Z. Zhao, W. Yang, Z.-P. Nie, and G. Chen, "Electromagnetic scattering and doppler analysis of three-dimensional breaking wave crests at low-grazing angles," Progress In Electromagnetics Research, Vol. 119, 239-252, 2011.
doi:10.2528/PIER11062401

9. Ergul, O., "Parallel implementation of MLFMA for homogeneous objects with various material properties," Progress In Electromagnetics Research, Vol. 121, 505-520, 2011.
doi:10.2528/PIER11092501

10. Colak, D., R. J. Burkholder, and E. H. Newman, "Multiple sweep method of moments analysis of electromagnetic scattering from 3D targets on ocean-like rough surfaces," Microwave Opt. Technol. Lett., Vol. 49, No. 1, 241-247, 2007.
doi:10.1002/mop.22074

11. Jeng, S. K., S. W. Lee, M. H. Shen, H. S. Yuan, and L. Pong, "High frequency scattering from a ship at sea," IEEE Trans. Antennas Propagat., Vol. 93, No. 5, 1436-1439, 1993.

12. Gao, P. C., Y. B. Tao, and H. Lin, "Fast RCS prediction using multiresolution shooting and bouncing ray method on the GPU," Progress In Electromagnetics Research, Vol. 107, 187-202, 2010.
doi:10.2528/PIER10061807

13. Burkholder, R. J., P. Janpugdee, and D. Colak, Development of computational tools for predicting the radar scattering from targets on a rough sea surface, Technical Report, Ohio State University Electro Science Laboratory, Columbus, Ohio, 2001.

14. Cui, K., X. J. Xu, and S. Y. Mao, "EM scattering of a special kind of cavities with applications to RCS calculation of targets over sea surface," International Conference on Radar CIE, Vol. 1, No. 4, 2006.

15. Cui, K. and X. J. Xu, "EM scattering calculation for complex targets over sea surface," IEEE Trans. Antennas Propagat., Vol. 3A, No. 6, 101-104, 2005.

16. Xu, X. J., Y. Wang, and Y. Qin, "SAR image modeling of ships over sea surface," Proc. of SPIE, Vol. 6363, 2006.

17. Dong, C. Z., C. Wang, X. Wei, and H.-C. Yin, "EM scattering from complex targets above a slightly rough surface," PIERS Online,, Vol. 3, No. 5, 685-688, 2007.
doi:10.2529/PIERS061212012947

18. Wright, J. W., "A new model for sea clutter," IEEE Trans. Antennas Propag., Vol. 16, 217-223, 1968.
doi:10.1109/TAP.1968.1139147

19. Valenzuela, G. R., "Theories for the interaction of electromagnetic waves and oceanic waves: A review," Bound. Layer Met., Vol. 13, 61-85, 1978.
doi:10.1007/BF00913863

20. Timchenko, A. I., "Model of electromagnetic wave scattering from sea surface with and without oil slicks," Progress In Electromagnetics Research, Vol. 37, 319-343, 2002.
doi:10.2528/PIER02080106

21. Plant, W. J. and W. C. Keller, "Evidence of bragg scattering in microwave doppler spectra of sea return," J. Geophys. Res., Vol. 95, 16299-16310, 1990.
doi:10.1029/JC095iC09p16299

22. Bass, F. G. and I. M. Fuks, Wave Scattering from Statistically Rough Surfaces, 418-442, Pergamon Press Oxford, 1979.

23. Fung, A. K. and K. Lee, "A semi-empirical sea-spectrum model for scattering coefficient estimation," IEEE J. Oceanic Engineering, Vol. 7, No. 4, 166-176, 1982.
doi:10.1109/JOE.1982.1145535

24. Zhao, Y.-W., M. Zhang, and H. Chen, "An efficient ocean sar raw signal simulation by employing fast fourier transform," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2273-2284, 2010.
doi:10.1163/156939310793699064

25. Park, J.-I. and K.-T. Kim, "A comparative study on ISAR imaging algorithms for radar target identification," Progress In Electromagnetics Research, Vol. 108, 155-175, 2010.
doi:10.2528/PIER10071901

26. Hasselman, K., et al. "Theory of synthetic aperture radar ocean imaging: A MARSEN view," J. Geophys. Res., Vol. 90, 4659-4686, 1985.
doi:10.1029/JC090iC03p04659

27. Andreas, A. B., A. Khenchaf, and A. Martin, "Bistatic radar imaging of the marine environment. Part I: Theoretical background," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 11, 3372-3383, 2007.
doi:10.1109/TGRS.2007.897436

28. Chen, H., M. Zhang, D. Nie, and H.-C. Yin, "Robust semi-deterministic facet model for fast estimation on EM scattering from ocean-like surface," Progress In Electromagnetics Research B, Vol. 18, 347-363, 2009.
doi:10.2528/PIERB09100508

29. Ward, K. D., C. J. Baker, and S. Watts, "Maritime surveillance radar. Part 1: Radar scattering from the ocean surface," IEEE J. Oceanic Engineering, Vol. 7, No. 4, 166-176, 1982.
doi:10.1109/JOE.1982.1145535

30. Michaeli, A., "Equivalent edge currents for arbitrary aspects of observation," IEEE Trans. Antennas Propagat., Vol. 32, 252-258, 1984.
doi:10.1109/TAP.1984.1143303

31. Wu, Z. S. and M. Zhang, "Improved equivalent edge currents by modified edge representation and their application in EM scattering," Acta Electronica Sinica, Vol. 26, No. 9, 1998.

32. Johnson, J. T., "A study of the four-path model for scattering from an object above a half space," Microwave Opt. Technol. Lett., Vol. 30, No. 6, 130-134, 2001.
doi:10.1002/mop.1242

33. Shtager, E. A., "An estimation of sea surface influence on radar reflectivity of ships," IEEE Trans. Antennas Propagat., Vol. 47, No. 10, 1623-1627, 1999.
doi:10.1109/8.805908

34. Plant, W. J., "Studies of backscattered sea return with a CW, dual-frequency, X-band radar," IEEE Trans. Antennas Propag., Vol. 25, 28-36, 1977.
doi:10.1109/TAP.1977.1141530

35. Hasselmann, D. E., "Directional wave spectra observed during JONSWAP 1973," J. Phys. Oceanogr., Vol. 10, No. 7, 1264-1280, 1980.
doi:10.1175/1520-0485(1980)010<1264:DWSODJ>2.0.CO;2

36. Luo, W., M. Zhang, C. Wang, and H.-C. Yin, "Investigation of low-grazing-angle microwave backscattering from three-dimensional breaking sea waves," Progress In Electromagnetics Research, Vol. 119, 279-298, 2011.
doi:10.2528/PIER11062607

37. Okino, N., Y. Kakazu, and M. Morimoto, "Extended depth-buffer algorithms for hidden-surface visualization," IEEE Computer Graphics and Applications, Vol. 4, No. 5, 79-88, 1984.
doi:10.1109/MCG.1984.276185

38. Cox, C. and W. H. Munk, "Statistics of the sea surface derived from sun glitter," J. Marine Res., Vol. 13, 198-227, 1954.

39. Ulaby, F. T., R. K. Moore, and A. K. Fung, Microwave remote sensing, Addison-Wesley Publishing Company, 1982.

40. Klein, L. A. and C. T. Swift, "An improved model for the dielectric constant of sea water at microwave frequencies," IEEE Trans. Antennas Propagat., Vol. 25, No. 1, 1977.
doi:10.1109/TAP.1977.1141539

41. Voronovich, A. G. and V. U. Zavorotni, "Theoretical model for scattering of radar signals in Ku- and C-bands from a rough sea surface with breaking waves," Waves in Random and Complex Media, Vol. 11, No. 3, 247-269, 2001.

42. Awada, A., M. Y. Ayari, A. Khenchaf, and A. Coatanhay, "Bistatic scattering from an anisotropic sea surface: Numerical comparison between the first-order SSA and the TSM models," Waves in Random and Complex Media, Vol. 16, No. 3, 383-394, 2006.
doi:10.1080/17455030600844089

43. Kozlov, A. I., L. P. Ligthart, and A. I. Logvin, Mathematical and Physical Modelling of Microwave Scattering and Polarimetric Remote Sensing --- Monitoring the Earth's Environment Using Polarimetric Radar: Formulation and Potential Applications, 43-65, Kluwer Academic Publishers, 2001.

44. Zhang, M., H. Chen, and H.-C. Yin, "Facet-based investigation on EM scattering from electrically large sea surface with two-scale profiles: Theoretical model," IEEE Trans. Geosci. Remote Sens., Vol. 49, No. 7, 2011.

45. Plant, W. J., "Microwave sea return at moderate to high incidence angles," Waves in Random and Complex Media, Vol. 13, No. 4, 339-354, 2003.