Vol. 37
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-11-30
Exponential Decay of High-Order Spurious Prolate Spheroidal Modes Induced by a Local Approximate Dtn Exterior Boundary Condition
By
Progress In Electromagnetics Research B, Vol. 37, 1-19, 2012
Abstract
We investigate analytically the asymptotic behavior of high-order spurious prolate spheroidal modes induced by a second-order local approximate DtN absorbing boundary condition (DtN2) when employed for solving high-frequency acoustic scattering problems. We prove that these reflected modes decay exponentially in the high frequency regime. This theoretical result demonstrates the great potential of the considered absorbing boundary condition for solving efficiently exterior high-frequency Helmholtz problems. In addition, this exponential decay proves the superiority of DtN2 over the widely used Bayliss-Gunsburger-Turkel absorbing boundary condition.
Citation
Helene Barucq, Rabia Djellouli, and Anne-Gaelle Saint-Guirons, "Exponential Decay of High-Order Spurious Prolate Spheroidal Modes Induced by a Local Approximate Dtn Exterior Boundary Condition," Progress In Electromagnetics Research B, Vol. 37, 1-19, 2012.
doi:10.2528/PIERB11100708
References

1. Abramovitz, M. and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Dover Publications, New York, 1972.

2. Antoine, X., M. Darbas, and Y. Y. Lu, "An improved surface radiation condition for high frequency acoustic scattering problems," Computer Methods in Applied Mechanics and Engineering, Vol. 195, No. 33-36, 4060-4074, 2006.
doi:10.1016/j.cma.2005.07.010

3. Barucq, H., R. Djellouli, and A. Saint-Guirons, "Performance assessment of a new class of local absorbing boundary conditions for elliptical-shaped boundaries," Applied Numerical Mathematics, Vol. 59, 1467-1498, 2009.
doi:10.1016/j.apnum.2008.10.001

4. Barucq, H., R. Djellouli, and A. Saint-Guirons, "High frequency analysis of the e±ciency of a local approximate DtN2 boundary condition for prolate spheroidal-shaped boundaries," Wave Motion, Vol. 8, No. 47, 583-600, 2010.
doi:10.1016/j.wavemoti.2010.04.004

5. Bayliss, A., M. Gunzburger, and E. Turkel, "Boundary conditions for the numerical solution of elliptic equations in exterior regions," SIAM J. Appl. Math., Vol. 42, No. 2, 430-451, 1982.
doi:10.1137/0142032

6. Bowman, J. J., T. B. A. Senior, and P. L. E. Uslenghi, Electromagnetic and Acoustic Scattering by Simple Shapes, North-Holland Publishing Company, Amsterdam, 1969.

7. Colton, D. and R. Kress, Integral Equations in Scattering Theory, Pure and Applied Mathematics, John Wiley and Sons, New York, 1983.

8. Darbas, M., "Prconditionneurs analytiques de type Calderon pour les formulations intgrales de problmes de diffraction d'ondes," Thèse de Doctorat, Universités de Toulouse 1 et Toulouse 3, INSA Toulouse, France, 2004.

9. Flammer, C., Spheroidal Wave Functions, Standford University Press, Standford, CA, 1957.

10. Givoli, D. and J. B. Keller, "Nonreflecting boundary conditions for elastic waves," Wave Motion, Vol. 12, No. 3, 261-279, 1990.
doi:10.1016/0165-2125(90)90043-4

11. Harari, I. and R. Djellouli, "Analytical study of the effect of wave number on the performance of local absorbing boundary conditions for acoustic scattering," Applied Numerical Mathematics, Vol. 50, 15-47, 2004.
doi:10.1016/j.apnum.2003.11.007

12. Harari, I. and T. J. R. Hughes, "Analysis of continuous formulations underlying the computation of time-harmonic acoustics in exterior domains," Comput. Methods Appl. Mech. Engrg., Vol. 97, No. 1, 103-124, 1992.
doi:10.1016/0045-7825(92)90109-W

13. Kriegsmann, G. A., A. Taflove, and K. R. Umashankar, "A new formulation of electromagnetic wave scattering using an on-surface radiation boundary condition approach," IEEE Trans. Antennas and Propagation, Vol. 35, No. 2, 153-161, 1987.
doi:10.1109/TAP.1987.1144062

14. Nigsch, M., "Numerical studies of time-independent and time-dependent scattering by several elliptical cylinders," Journal of Computational and Applied Mathematics, Vol. 204, 231-241, 2007.
doi:10.1016/j.cam.2006.01.041

15. Reiner, R. C., R. Djellouli, and I. Harari, "The performance of local absorbing boundary conditions for acoustic scattering from elliptical shapes," Comput. Methods Appl. Mech. Engrg., Vol. 195, 3622-3665, 2006.
doi:10.1016/j.cma.2005.01.020

16. Reiner, R. C. and R. Djellouli, "Improvement of the performance of the BGT2 condition for low frequency acoustic scattering problems," Wave Motion, Vol. 43, 406-424, 2006.
doi:10.1016/j.wavemoti.2006.02.002

17. Saint-Guirons, A.-G., "Construction et analyse de conditions absorbantes de type Dirichlet-to-Neumann pour des frontières ellipsoïdales ," Thèse de Doctorat, Université de Pau et des Pays de l'Adour, France, 2008. Available online at: http://tel.archives-ouvertes.fr.

18. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, New York, 1941.

19. Taylor, M. E., Pseudodifferential Operators, Princeton University Press, Princeton, New Jersey, 1981.

20. Turkel, E., "Boundary conditions and iterative schemes for the helmholtz equation in unbounded regions," Computational Methods for Acoustics Problems, 127-158, F. Magoulès (ed.), Saxe-Coburg Publications, 2009.