Vol. 37
Latest Volume
All Volumes
2011-11-30
Exponential Decay of High-Order Spurious Prolate Spheroidal Modes Induced by a Local Approximate Dtn Exterior Boundary Condition
By
Progress In Electromagnetics Research B, Vol. 37, 1-19, 2012
Abstract
We investigate analytically the asymptotic behavior of high-order spurious prolate spheroidal modes induced by a second-order local approximate DtN absorbing boundary condition (DtN2) when employed for solving high-frequency acoustic scattering problems. We prove that these reflected modes decay exponentially in the high frequency regime. This theoretical result demonstrates the great potential of the considered absorbing boundary condition for solving efficiently exterior high-frequency Helmholtz problems. In addition, this exponential decay proves the superiority of DtN2 over the widely used Bayliss-Gunsburger-Turkel absorbing boundary condition.
Citation
Helene Barucq, Rabia Djellouli, and Anne-Gaelle Saint-Guirons, "Exponential Decay of High-Order Spurious Prolate Spheroidal Modes Induced by a Local Approximate Dtn Exterior Boundary Condition," Progress In Electromagnetics Research B, Vol. 37, 1-19, 2012.
doi:10.2528/PIERB11100708
References

1. Abramovitz, M. and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Dover Publications, New York, 1972.

2. Antoine, X., M. Darbas, and Y. Y. Lu, "An improved surface radiation condition for high frequency acoustic scattering problems," Computer Methods in Applied Mechanics and Engineering, Vol. 195, No. 33-36, 4060-4074, 2006.
doi:10.1016/j.cma.2005.07.010

3. Barucq, H., R. Djellouli, and A. Saint-Guirons, "Performance assessment of a new class of local absorbing boundary conditions for elliptical-shaped boundaries," Applied Numerical Mathematics, Vol. 59, 1467-1498, 2009.
doi:10.1016/j.apnum.2008.10.001

4. Barucq, H., R. Djellouli, and A. Saint-Guirons, "High frequency analysis of the e±ciency of a local approximate DtN2 boundary condition for prolate spheroidal-shaped boundaries," Wave Motion, Vol. 8, No. 47, 583-600, 2010.
doi:10.1016/j.wavemoti.2010.04.004

5. Bayliss, A., M. Gunzburger, and E. Turkel, "Boundary conditions for the numerical solution of elliptic equations in exterior regions," SIAM J. Appl. Math., Vol. 42, No. 2, 430-451, 1982.
doi:10.1137/0142032

6. Bowman, J. J., T. B. A. Senior, and P. L. E. Uslenghi, Electromagnetic and Acoustic Scattering by Simple Shapes, North-Holland Publishing Company, Amsterdam, 1969.

7. Colton, D. and R. Kress, Integral Equations in Scattering Theory, Pure and Applied Mathematics, John Wiley and Sons, New York, 1983.

8. Darbas, M., "Prconditionneurs analytiques de type Calderon pour les formulations intgrales de problmes de diffraction d'ondes," Thèse de Doctorat, Universités de Toulouse 1 et Toulouse 3, INSA Toulouse, France, 2004.

9. Flammer, C., Spheroidal Wave Functions, Standford University Press, Standford, CA, 1957.

10. Givoli, D. and J. B. Keller, "Nonreflecting boundary conditions for elastic waves," Wave Motion, Vol. 12, No. 3, 261-279, 1990.
doi:10.1016/0165-2125(90)90043-4

11. Harari, I. and R. Djellouli, "Analytical study of the effect of wave number on the performance of local absorbing boundary conditions for acoustic scattering," Applied Numerical Mathematics, Vol. 50, 15-47, 2004.
doi:10.1016/j.apnum.2003.11.007

12. Harari, I. and T. J. R. Hughes, "Analysis of continuous formulations underlying the computation of time-harmonic acoustics in exterior domains," Comput. Methods Appl. Mech. Engrg., Vol. 97, No. 1, 103-124, 1992.
doi:10.1016/0045-7825(92)90109-W

13. Kriegsmann, G. A., A. Taflove, and K. R. Umashankar, "A new formulation of electromagnetic wave scattering using an on-surface radiation boundary condition approach," IEEE Trans. Antennas and Propagation, Vol. 35, No. 2, 153-161, 1987.
doi:10.1109/TAP.1987.1144062

14. Nigsch, M., "Numerical studies of time-independent and time-dependent scattering by several elliptical cylinders," Journal of Computational and Applied Mathematics, Vol. 204, 231-241, 2007.
doi:10.1016/j.cam.2006.01.041

15. Reiner, R. C., R. Djellouli, and I. Harari, "The performance of local absorbing boundary conditions for acoustic scattering from elliptical shapes," Comput. Methods Appl. Mech. Engrg., Vol. 195, 3622-3665, 2006.
doi:10.1016/j.cma.2005.01.020

16. Reiner, R. C. and R. Djellouli, "Improvement of the performance of the BGT2 condition for low frequency acoustic scattering problems," Wave Motion, Vol. 43, 406-424, 2006.
doi:10.1016/j.wavemoti.2006.02.002

17. Saint-Guirons, A.-G., "Construction et analyse de conditions absorbantes de type Dirichlet-to-Neumann pour des frontières ellipsoïdales ," Thèse de Doctorat, Université de Pau et des Pays de l'Adour, France, 2008. Available online at: http://tel.archives-ouvertes.fr.

18. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, New York, 1941.

19. Taylor, M. E., Pseudodifferential Operators, Princeton University Press, Princeton, New Jersey, 1981.

20. Turkel, E., "Boundary conditions and iterative schemes for the helmholtz equation in unbounded regions," Computational Methods for Acoustics Problems, 127-158, F. Magoulès (ed.), Saxe-Coburg Publications, 2009.