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2Laboratoire de Mathématiques et leurs Applications, CNRS UMR
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l’Université, 64013 Pau, France
3Department of Mathematics, California State University Northridge,
& Interdisciplinary Research Institute for the Sciences, IRIS, USA
4Basque Center of Applied Mathematics (BCAM), Bizkaia Technology
Park, Building 500, 48160 Derio, Basque Country, Spain

Abstract—We investigate analytically the asymptotic behavior
of high-order spurious prolate spheroidal modes induced by a
second-order local approximate DtN absorbing boundary condition
(DtN2) when employed for solving high-frequency acoustic scattering
problems. We prove that these reflected modes decay exponentially
in the high frequency regime. This theoretical result demonstrates
the great potential of the considered absorbing boundary condition
for solving efficiently exterior high-frequency Helmholtz problems. In
addition, this exponential decay proves the superiority of DtN2 over the
widely used Bayliss-Gunsburger-Turkel absorbing boundary condition.

1. INTRODUCTION

A prerequisite step for solving numerically exterior Helmholtz problems
using a domain-based formulation such as finite element methods
(FEM) or finite difference methods (FDM) is the reformulation of this
class of problems in a bounded domain. This is often accomplished
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by surrounding the given scatterer(s) (or radiator) by an artificial
boundary that is located at some distance (measured in multiples
of wavelength of interest) from its surface. A so-called “absorbing”
boundary condition is then prescribed on the artificial boundary to
represent the “far-field” behavior of the scattered field. The main
difficulty here is the design of a simple (in terms of implementation in
a FEM code), reliable, and cost-effective boundary condition able to
“mimic” the far-field behavior of the scattered. Clearly, the efficiency
of such a boundary condition has a tremendous impact on the accuracy,
the computational complexity, as well as on the cost-effectiveness of
any solution methodology for this class of wave problems that are
very important to many applications such as sonar, radar, geophysical
exploration, nondestructive testing, etc.. Given that, various absorbing
boundary conditions have been designed for over half a century, and
the quest for such conditions is still ongoing (see, e.g., the review by
Turkel in [20] and the references therein).

Recently, the authors proposed a new absorbing boundary
condition based on a local approximation of the Dirichlet-to-Neumann
(DtN) operator [3, 17]. This condition distinguishes itself from existing
absorbing boundary conditions in many aspects. First, the new local
second-order approximate DtN boundary condition, denoted by DtN2,
is particularly well adapted for elongated scatterers (e.g., submarines)
which is not the case for the standard approximate DtN boundary
condition [10, 12]. Indeed, the latter condition requires the shape of
the artificial boundary to be circular/spherical, and therefore often
leads to larger than needed computational domains, which hampers
computational efficiency. Second, the new DtN2 boundary condition
is exact for the first two modes, easy to implement and to parallelize,
and more importantly compatible with the local structure of the
computational finite element scheme. The results pertaining to the
performance analysis of the proposed DtN2 boundary condition in
the low frequency regime reported in [3, 17], revealed that DtN2
is (a) very accurate regardless of the slenderness of the boundary
of the computational domain, and (b) outperforms the widely-used
second-order Bayliss-Gunzbürger-Turkel (BGT2) absorbing boundary
condition [5] when expressed in prolate spheroidal coordinates [15, 16].
The situation is similar in the high-frequency regime, as indicated by
the results of both the numerical and the analytical investigations
reported in [4]. Nevertheless, it has been demonstrated that DtN2
produces reflected prolate spheroidal modes at the exterior boundary.
However, it has been established that these spurious modes decay-
fortunately-faster than 1/(ka)15/8 (where k is the wavenumber and a
the semi-major axis of the prolate spheroidal-shaped scatterer) [4].
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The purpose of this work is to conduct an analytical study of
the behavior of the high-order spurious modes induced by the new
DtN2 boundary condition, and to establish a sharper estimate that
provides a better understanding on their asymptotic behavior in the
high-frequency regime. We prove that all the high-order reflected
prolate spheroidal modes (whether they are propagating, evanescent,
or grazing modes) decay — in fact — exponentially as ka tends to
∞. This result is very important to the performance of this absorbing
boundary condition since it shows that the effect of these spurious
waves on the accuracy level — if any — is negligible in the high
frequency regime. Hence, this result provides practitioners with the
needed confidence to employ the proposed boundary condition on
artificial boundaries that are “close” to the considered scatterer’s
boundary, leading therefore to small computational domains. Note
that the situation is not the same in the case of the standard
DtN2/BGT2 boundary conditions (recall that in 3D, the standard
DtN2 and BGT2 conditions coincide [11]). More specifically, in the
high-frequency regime, the high-order spurious modes (whether they
are propagating, evanescent, or grazing modes) created by the standard
BGT2/DtN2 boundary condition do not decay, as observed in [2],
requiring therefore to place the artificial boundary very far from the
obstacle to avoid the deterioration of the accuracy level due to the
possible contamination of these non physical modes. Consequently,
the present study demonstrates analytically the superiority of the new
DtN2 boundary condition designed for prolate spheroidal boundaries
over the standard BGT2/DTN2 boundary condition. Recall that
previous numerical studies [3, 4, 17] have already indicated that the
new DtN2 boundary condition outperforms the standard BGT2/DTN2
boundary condition. Hence, this study suggests DtN2 to be the
primary absorbing boundary condition to be employed when solving
high-frequency acoustic scattering problems by elongated scatterers.
Note that the suggested boundary condition can also be used in the
case of two-dimensional scattering problems by electromagnetic waves
since such problems can be formulated using the Helmholtz equation,
the Dirichlet (resp. Neumann) boundary condition on the scatterer(s)
for the scattered field with E-polarization (resp. H-polarization), and
the Sommerfeld condition [6].

The remainder of this paper is as follows. First, we specify
in Section 2 the nomenclature and assumptions, and formulate the
considered three-dimensional acoustic scattering problem in a bounded
domain using the new local approximate DtN2 absorbing boundary
condition proposed in [3, 17]. Then, we announce in Section 3 the
main result of this paper. Section 4 is devoted to the proof of the
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result. It is based on three steps, each step is formulated as a Lemma.
Concluding remarks are presented in Section 5. Appendix A dedicated
to the classification of the prolate spheroidal modes is included only
for completeness.

2. PRELIMINARIES

2.1. Notations

Throughout this paper, we use the prolate spheroidal coordinates (ξ,
ϕ, θ) related to the cartesian coordinates (x, y, z) by:

x = b sinϕ cos θ, y = b sinϕ sin θ and z = a cosϕ

where ϕ ∈ [0, π) and θ ∈ [0, 2π). The parameters a and b are
respectively the semi-major and the semi-minor axes of the considered
prolate spheroid, and are given by a = f cosh ξ and b = f sinh ξ where
ξ is strictly positive and the real number f is called the interfocal
distance (f =

√
a2 − b2). In addition, we adopt the following notations:

• Ω is a prolate spheroidal-shaped scatterer whose surface is denoted
by Γ. Ωe is the open complement in R3 of the domain Ω.

• aΓ (resp. bΓ) represents the semi-major (resp. semi-minor) axis
of the scatterer Ω, and eΓ its eccentricity.

• Σ is an artificial boundary surrounding the scatterer Ω. Σ is
assumed to be a prolate-spheroid surface.

• aΣ (resp. bΣ) is the semi-major (resp. semi-minor) axis of the
prolate spheroidal-shaped domain whose exterior surface is Σ with
an eccentricity denoted by eΣ.

• Ωb is a bounded computational domain whose interior (resp.
exterior) boundary is Γ (resp. Σ), as illustrated in Figure 1.

• ∆Σ is the Laplace Beltrami operator on the artificial boundary Σ.
• k is a positive number representing the wavenumber.

• R
(j)
mn(kf, cosh ξ) is the radial spheroidal wave function of the jth

kind corresponding to the (mn)th mode (see Chapter 4 in [9])
where (m,n) ∈ N2 such that n ≥ m.

• Smn(kf, cosϕ) is the angular spheroidal wave function correspond-
ing to the (mn)th mode (see Chapter 3 in [9]).

• Nmn is the normalization factor associated to Smn(kf, cosϕ). Nmn

is given by (see Equation (3.1.32) p. 22 in [9]):

Nmn =
∫ 1

−1
[Smn(kf, v)]2 dv (1)
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• λmn is the prolate spheroidal eigenvalue associated to the (mn)th
mode (see p. 11 in [9]).

• For a function Fmn, we denote its restriction on Γ by:

Fmn|Γ
= Fmn

(
eΓkaΓ, e−1

Γ

)
(2)

Similarly, the restriction of Fmn on Σ is denoted by:

Fmn|Σ
= Fmn

(
eΣkaΣ, e−1

Σ

)
(3)

• The partial derivative of the radial spheroidal wave function R
(j)
mn

with respect to the variable ξ is denoted by R
(j)′
mn , i.e.,

R(j)′
mn =

∂R
(j)
mn

∂ξ
; j =∈ N (4)

• rmn|Σ are complex numbers given by:

rmn|Σ
=

R
(3)′
mn|Σ

R
(3)
mn|Σ

(5)

• r
(j)
mn|Σ

are complex numbers given by:

r(j)
mn|Σ

=





R
(3)′
mn|Σ

R
(3)
mn|Σ

if j = 3

R
(4)′
mn|Σ

R
(4)
mn|Σ

if j = 4

(6)

Note that it follows from (5) and (6) that r
(3)
mn|Σ

= rmn|Σ
.

• Γ(·) denotes the Gamma function (see, for example, Chapter 6
in [1]).

• || · ||2 is the euclidean norm.

2.2. The Acoustic Scattering Problem

We recall that the direct acoustic scattering problem by a rigid sound-
soft scatterer Ω can be formulated as follows [7]:





∆uscat + k2uscat = 0 in Ωe

uscat = −uinc on Γ
lim

||x||2→+∞
||x||2

[
∂uscat

∂||x||2 − ikuscat
]

= 0
(7)

where ∆ is the Laplace operator, uscat is the scattered field, and uinc

is the incident plane wave. Note that uinc can be expressed in prolate
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spheroidal coordinates as an infinite series (see Equation (84) p. 386
in [18]):

uinc =
+∞∑

m=0

+∞∑
n=m

dinc
mnu(1)

mn (kf, cosh ξ, cosϕ) (8)

where the mnth Fourier mode u
(j)
mn (j = 1, 3, 4) is given by:

u(j)
mn (kf, cosh ξ, cosϕ) = R(j)

mn (kf, cosh ξ)
Smn (kf, cosϕ)√

Nmn
cosmθ (9)

and the mnth Fourier coefficient dinc
mn is given by:

dinc
mn = 2εm

in√
Nmn

Smn (kf, cosϕ0) (10)

ϕ0 being the incident angle of the plane wave uinc, εm = (2−δ0m), and
δ0m is the Kronecker delta symbol.

Furthermore, since the scatterer Ω is assumed to be prolate
spheroid, the solution uscat of the exterior boundary value problem (7)
is also expressed as an infinite series (see Equation (11.36) p. 422 in [6]):

uscat =
+∞∑

m=0

+∞∑
n=m

dscat
mn u(3)

mn (kf, cosh ξ, cosϕ) (11)

where the mnth Fourier outgoing mode u
(3)
mn(kf, cosh ξ, cosϕ) is given

by Equation (9) for j = 3, whereas the associated mnth Fourier
coefficient dscat

mn is given by:

dscat
mn = −2εm

in√
Nmn

R
(1)
mn|Γ

R
(3)
mn|Γ

Smn (eΓkaΓ, cosϕ0) (12)

Observe that it follows from substituting Equation (10) into
Equation (12) that:

dscat
mn = −

R
(1)
mn|Γ

R
(3)
mn|Γ

dinc
mn|Γ

(13)

Note that the Dirichlet boundary condition characterizing the
sound-soft nature of the considered scatterer is adopted here for the
simplicity of the presentation. The present study and the obtained
results can easily be extended to other admissible boundary conditions.
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(a) (b)

Figure 1. (a) The bounded computational domain Ωb with (b) a
two-dimensional illustration in the xy-plane.

2.3. Bounded Domain-based Formulation

We reformulate the exterior boundary value problem (7) in a bounded
domain Ωb by surrounding the scatterer Ω with an artificial boundary
Σ (see Figure 1), and then by prescribing the new DtN2 absorbing
boundary condition suggested in [3, 17] on the exterior boundary Σ.
Consequently, the resulting boundary value problem is given by:





∆uDtN + k2uDtN = 0 in Ωb

uDtN = −uinc on Γ
∂uDtN

∂n = 1

aΣ

√
1−e2

Σ cos2 ϕ
TuDtN on Σ

(14)

where n is the outward normal to the exterior boundary Σ, and T is
the constructed second-order local approximate DtN operator. The
differential-type operator T is given by [3, 17]:

TuDtN =

√
1− e2

Σ(
λ01|Σ

− λ00|Σ

)
eΣ

{[
λ01|Σ

r01|Σ
− λ00|Σ

r00|Σ

−
(
r00|Σ

− r01|Σ

)
(eΣkaΣ)2 cos2 ϕ

]
uDtN

+
(
r00|Σ

− r01|Σ

)
∆ΣuDtN

}
(15)

Note that the field uDtN is an approximation of the exact scattered
field uscat.

The approximate scattered field uDtN can also be expressed
as an infinite series. However, unlike the exact scattered field
uscat, this approximate field is a superposition of outgoing modes
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R
(3)
mn(kf, cosh ξ)) and incoming modes R

(4)
mn(kf, cosh ξ)). More

specifically, we have (see Equation (16) p. 233 in [14]):

uDtN =
+∞∑

m=0

+∞∑
n=m

[
dDtN

mn u(3)
mn (kf, cosh ξ, cosϕ)

+τDtN
mn u(4)

mn (kf, cosh ξ, cosϕ)
]

(16)

where u
(j)
mn(kf, cosh ξ, cosϕ) (j = 3, 4) is given by Equation (9).

Observe that the incoming modes are spurious waves due to the
reflections of the outgoing scattered field at the artificial exterior
boundary Σ. In the absence of Σ or in the case of a perfectly
nonreflecting boundary condition, the Fourier coefficients satisfy
τDtN
mn = 0 and dDtN

mn = dscat
mn for all (m,n) ∈ N2 such that n ≥ m.

Therefore, the degree of transparency of this absorbing boundary
condition, and thus the level of accuracy in the approximation as well as
the computational cost, depend on (a) the magnitude of the coefficients
|τDtN

mn | of the reflected waves, and (b) the magnitude of the difference
|dDtN

mn − dscat
mn |. These two quantities become very small (resp. very

large) as the intensity of the reflected waves at the boundary Σ are
negligible (resp. very important).

Furthermore, the Fourier coefficients of the solution uDtN satisfy
(see Theorem 3.1, p. 588 in [4]):





dDtN
mn = −Ψ

(4)
mn|Σ

R
(1)
mn|Γ

W 3,4
mn(Γ,Σ)

dinc
mn

τDtN
mn =

Ψ
(3)
mn|Σ

R
(1)
mn|Γ

W 3,4
mn(Γ,Σ)

dinc
mn

(17)

where dinc
mn is given by Equation (10) whereas the function Ψ(j)

mn|Σ
(j = 3, 4) is given by:

Ψ(j)
mn|Σ = R

(j)
mn|Σ

[
cmn|Σ + r

(j)
mn|Σ

]
(18)

and the functions R
(j)
mn|Σ and r

(j)
mn|Σ are defined in Section 2. Moreover,

cmn|Σ is given by:

cmn|Σ =
r00|Σ

(
λ01|Σ − λmn|Σ

)− r01|Σ
(
λ00|Σ − λmn|Σ

)

λ00|Σ − λ01|Σ
(19)

Last, the Wronskian-like expression W 3,4
mn(Γ, Σ) is given by:

W 3,4
mn(Γ, Σ) = R(3)

mn|Γ
Ψ(4)

mn|Σ −R(4)
mn|Γ

Ψ(3)
mn|Σ (20)
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3. ANNOUNCEMENT OF THE MAIN RESULT

From now on, we assume that the semi-major and semi-minor axes
satisfy respectively aΣ = σaΓ and bΣ = σbΓ. The positive real
number σ, called the widening coefficient, satisfies σ > 1. Such an
assumption implies that the two boundaries have the same eccentricity
(eΣ = eΓ = e). Note that σ = 1 corresponds to the extreme case
scenario where Σ ≡ Γ, the OSRC formulation [3, 13]. The following
result describes the asymptotic behavior of the Fourier coefficient τDtN

mn

corresponding to the high-order spurious modes u
(4)
mn. We have:

Theorem 3.1 For all (m,n) ∈ N such that n ∼ σkaΓ and m ≤ n, the
reflection Fourier coefficients τDtN

mn given by Equation (17) satisfy:

∣∣τDtN
mn

∣∣ < 2κ

(√
eΓkaΓ

π

)1/4

exp
(
−4

3
σkaΓζ3/2

)
; as kaΓ →∞ (21)

where κ ≈ 1.086435 and the real number ζ satisfies
2
3
ζ2/3 = ln

[
σ

(
1 +

√
1− σ−2

)]
−

√
1− σ−2 (22)

The following observations are noteworthy:

i. The asymptotic estimate given by (21) indicates that the high-
order spurious modes decay exponentially in the high-frequency
regime. This mathematical result proves that the effect of these
spurious waves on the accuracy level of the approximation of
the scattered field is negligible in the high frequency regime.
Consequently, this result provides practitioners with the needed
confidence to employ the proposed boundary condition on artificial
boundaries that are “close” to the considered scatterer’s boundary,
leading therefore to small computational domains. Recall
that a large computational domain may lead to a prohibitive
computational cost since the accuracy requires a very fine mesh
in the high frequency regime.

ii. Theorem 3.1 demonstrates the superiority of the new DtN2
absorbing boundary condition given by (15) over the standard
DtN2/BGT2 absorbing boundary. Indeed, in the high-frequency
regime, the high-order spurious modes (propagating, evanescent,
or grazing modes) induced by the standard BGT2/DtN2 boundary
condition do not decay, as observed in [2]. Consequently, the use of
this condition requires placing the artificial boundary very far from
the obstacle in order to avoid the deterioration of the accuracy
level due to the presence of the non physical incoming waves.
We must point out that previous numerical studies [3, 4, 17] have
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already suggested that the new DtN2 boundary condition clearly
outperforms the standard BGT2/DTN2 boundary condition.

iii. Theorem 3.1 addresses the asymptotic behavior of the high-modes
of the reflected parts of the field uDtN, that is the modes umn

such that n ∼ σkaΓ and m ≤ n. The modes classification
presented in Appendix A shows that these modes are of three
types: propagating, evanescent, and grazing modes.

4. PROOF OF THEOREM 3.1

This section is devoted to the proof of Theorem 3.1. To this end, we
proceed into three steps, each step is formulated as a Lemma.

The first result describes the asymptotic behavior of the functions
Ψ(3)

mn|Σ given by (18).
Lemma 4.1 For all (m,n) ∈ N2 such that n ∼ σkaΓ and m ≤ n and,
the function Ψ(3)

mn|Σ
satisfies:

Ψ(3)
mn|Σ

∼ π1/225/6eΓ exp(−iπ5/6)
32/3Γ(2/3)

(σkaΓ)1/6 ; as kaΓ → +∞ (23)

Proof of Lemma 4.1. Since the function Ψ(3)
mn|Σ

is given by
Equation (18), for j = 3, the proof of Lemma 4.1 requires to establish
the asymptotic behavior of cmn|Σ , R

(3)
mn|Σ , and r

(3)
mn|Σ .

i. First, we have (see Equation (33) in [4]):

cmn|Σ ∼ −ieΓσkaΓ + eΓ; as kaΓ → +∞ (24)

ii. Next, we know that (see Chapter 4 p. 30 in [9]):

R(3)
mn|Σ

∼ h(1)
n (σkaΓ) (25)

where h
(1)
n denotes the spherical Hankel function of the first

kind (also called spherical Bessel function of the third kind, see
Chapter 10 in [1]). In addition, we have (see p. 437 in [1]):

h(1)
n (σkaΓ) =

√
π

2σkaΓ
H

(1)
n+1/2(σkaΓ) (26)

where H
(1)
n+1/2 denotes the Hankel function of the first kind and of

order n + 1/2 (see [1], p. 355).
Hence, for n ∼ σkaΓ, it follows from Equations (25) and (26) that:

R
(3)
mσkaΓ|Σ ∼

√
π

2σkaΓ
H

(1)
σkaΓ

(σkaΓ); as kaΓ → +∞ (27)
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On the other hand, we know that (see (9.3.31) and (9.3.32) p. 368
in [1]):

H
(1)
σkaΓ

(σkaΓ) ∼ 21/3(1− i
√

3)
32/3Γ(2/3)(σkaΓ)1/3

; as kaΓ →∞ (28)

Hence it follows from substituting Equation (28) into Equa-
tion (27) that:

R
(3)
mσkaΓ|Σ ∼

π1/225/6 exp(−iπ/3)
32/3Γ(2/3)

1
(σkaΓ)5/6

; as kaΓ → +∞ (29)

iii. Last, we derive the asymptotic behavior of r
(3)
mn|Σ given by

Equation (6). Observe that, (see (4.1.16) p. 32 in [9]):

r
(3)
mn|Σ =

R
(3)′
mn|Σ

R
(3)
mn|Σ

∼ eΓσkaΓ
h

(1)′
n (σkaΓ)

h
(1)
n (σkaΓ)

; as kaΓ → +∞ (30)

where the h
(1)′
n is the derivative of the spherical Hankel function

of the first kind (see Chapter 10 in [1]). In addition, we have
(see (10.1.1) p. 437 in [1]):

h
(1)′
n (σkaΓ)

h
(1)
n (σkaΓ)

∼
H

(1)′
n+1/2(σkaΓ)

H
(1)
n+1/2(σkaΓ)

− 1
2σkaΓ

; as kaΓ → +∞ (31)

where H
(1)′
n+1/2 denotes the derivative of the Hankel function of the

first kind and of order n + 1/2 (see [1], Chapter 9 & 10).
Hence, for n ∼ σkaΓ, it follows (see (9.3.5) p. 366 or (9.3.31)–
(9.3.34) p. 368 in [1]) that:

H
(1)′
σkaΓ

(σkaΓ)

H
(1)
σkaΓ

(σkaΓ)
∼ 21/331/3Γ(2/3)eΓ

Γ(1/3)(σkaΓ)1/3
exp(2iπ/3); as kaΓ→+∞ (32)

Consequently, we deduce from Equations (30)–(32), that:

r
(3)
mσkaΓ|Σ

∼ 21/331/3Γ(2/3)eΓ exp(i2π/3)
Γ(1/3)

(σkaΓ)2/3; as kaΓ→+∞ (33)

The substitution of Equations (24), (29), and (33) into Equation (18)
concludes the proof of Lemma 4.1.

The next result states the behavior of the Wronskian-like operator
W 3,4

mn(Γ,Σ), given by Equation (20), for the high-order modes.
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Lemma 4.2 For all (m,n) ∈ N2 such that n ∼ σkaΓ and m ≤ n, the
Wronskian-like function W 3,4

mn(Γ, Σ) satisfies:

W 3,4
mσkaΓ

(Γ, Σ)∼−π1/225/6eΓσ1/6 exp
(

2
3σkaΓζ3/2

)

32/3(σ2−1)1/4Γ(2/3)(kaΓ)5/6
; as kaΓ →∞ (34)

where the variable ζ is given by Equation (22).
Proof of Lemma 4.2 It follows from the expression of W 3,4

mn(Γ, Σ)
given by Equation (20), that the proof of Lemma 4.2 requires the
derivation of the asymptotic behavior of both R

(j)
mn|Γ

and Ψ(j)
mn|Σ for

j = 3, 4.
i. The asymptotic behavior of the radial spheroidal wave functions

R
(j)
mn|Γ

(j = 3, 4) is given by (see Chapter 4 p. 30 in [9]):

R(j)
mn|Γ

∼ h(j−2)
n|Γ

; as kaΓ →∞ (35)

where h
(2)
n|Γ

denotes the spherical Hankel function of the second
kind of order n (see Chapter 10 in [1]). On the other hand, we
know that (see p. 437 in [1]):

h(2)
n|Γ

=
√

π

2σkaΓ
H

(2)
n+1/2(kaΓ) (36)

where H
(2)
n+1/2 denotes the Hankel function of the second kind and

of order n + 1/2 (see Chapter 9 & 10 in [1]). In addition, for
n ∼ σkaΓ and as kaΓ → ∞, we know that for j = 3, 4 we have
(see (9.3.31)–(9.3.34) p. 368 in [1]):

H
(j)
σkaΓ

(kaΓ) ∼
(

4ζ

(1− σ−2)

)1/4

Ai
(
(σkaΓ)2/3ζ

)
+ (−1)j iBi

(
(σkaΓ)2/3ζ

)

(σkaΓ)1/3
(37)

where Ai and Bi are the Airy functions (see p. 446 in [1]), and ζ
is defined by Equation (22).
Moreover, we have (see Equation (10.4.9) p. 446 in [1]):

Ai(z)∓ iBi(z) = 2 exp(∓iπ/3)Ai (z exp(±i2π/3)) (38)

where z = (σkaΓ)2/3ζ.
On the other hand, the asymptotic behavior of the Airy function
is given by (see (10.4.59) p. 448 in [1]):

Ai(z) ∼ π−1/2

2
z−1/4 exp

(
−2

3
z3/2

)
; as kaΓ →∞ (39)
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where this time z = (σkaΓ)2/3ζ exp(±i2π/3).
Hence, as kaΓ →∞, it follows from Equations (35)–(39), that:

R
(3)
mσkaΓ|Σ

(kaΓ) = R
(4)
mσkaΓ|Σ

(kaΓ) ∼ −i
(σ2 − 1)1/4kaΓ

exp
(
−2

3
σkaΓζ3/2

)
(40)

ii. The asymptotic behavior of Ψ(4)
mσkaΓ|Σ

is an immediate consequence

of the asymptotic behavior of Ψ(3)
mn|Σ obtained in Lemma 4.1 and

the fact that (see (21.9.2) and (21.9.3), p. 756 in [1]):

R
(4)
mσkaΓ|Σ

= R
(3)
mσkaΓ|Σ

; as kaΓ → +∞
and

r
(4)
mσkaΓ|Σ

∼ r
(3)
mσkaΓ|Σ

; as kaΓ → +∞ (41)

together with the asymptotic behavior of cmn|Σ given by
Equation (24). Hence, we have:

Ψ(4)
mσkaΓ|Σ

∼ π1/225/6eΓ exp(−iπ/6)
32/3Γ(2/3)

(σkaΓ)1/6; as kaΓ→+∞ (42)

iii. Last, the proof of Lemma 4.2 results from substituting
Equations (23), (40), and (42) into Equation (20).
Last, we establish the asymptotic behavior of the radial spheroidal

wave function of the first kind.
Lemma 4.3 For all (m,n) ∈ N2 such that n ∼ σkaΓ and m ≤ n, the
function R

(1)
mn|Γ

satisfies:

R
(1)
mn|Γ ∼

exp
(−2

3σkaΓζ3/2
)

2(σ2 − 1)1/4kaΓ
; as kaΓ → +∞ (43)

where ζ is given by Equation (22).
Proof of Lemma 4.3 First, observe that the asymptotic behavior of
R

(1)
mn|Γ

, as kaΓ → +∞, is given by (see Chapter 4 p. 30 in [9]):

R(1)
mn|Γ

∼ jn(kaΓ) (44)

where jn denotes the spherical Bessel function of the first kind (see
Chapter 10 in [1]). In addition, we have (see p. 437 in [1]):

jn(kaΓ) =
√

π

2kaΓ
Jn+1/2(kaΓ) (45)
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where Jn+1/2 denotes the Bessel function of order n + 1/2 (see
Chapters 9 & 10 in [1]).

Hence, it follows from Equations (44)–(45) that:

R
(1)
mn|Γ ∼

√
π

2kaΓ
Jn+1/2(kaΓ); as kaΓ → +∞ (46)

On the other hand, for n ∼ σkaΓ, we also have (see (9.3.6) p. 366
in [1]):

JσkaΣ
(kaΣ) ∼

(
4ζ

1− 1
σ2

)1/4
Ai

(
(σkaΣ)2/3ζ

)

(σkaΣ)1/3
; as kaΓ →∞ (47)

where ζ is given by Equation (22) and Ai is the Airy function (whose
asymptotic behavior is given by (see (10.4.59), p. 448 in [1]):

Ai
(
(σkaΓ)2/3ζ

)
∼ π−1/2

2

[
(σkaΓ)2/3ζ

]−1/4
exp

(
−2

3
(σkaΓ)ζ3/2

)
(48)

Hence, as kaΓ →∞, it follows from Equations (47) and (48) that:

JσkaΣ
(kaΣ) ∼

(
4

1− 1
σ2

)1/4
π−1/2

2(σkaΓ)1/2
exp

(
−2

3
(σkaΓ)ζ3/2

)
(49)

Finally, substituting Equation (49) into Equation (46) leads to:

R
(1)
mσkaΓ|Γ

∼ exp
(−2

3σkaΓζ3/2
)

2(σ2 − 1)1/4kaΓ
; as kaΓ → +∞

which concludes the proof of Lemma 4.3.
We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1
From Lemmas 4.1–4.3 and the definition of the Fourier coefficient

τDtN
mn (see Equation (17)) that for all (m,n) ∈ N2 such that n ∼ σkaΓ

and m ≤ n, we deduce that:

τDtN
mσkaΓ

∼−exp(−i5π/6)dinc
mσkaΓ

2
exp

(
−4

3
σkaΓζ3/2

)
; as kaΓ→∞ (50)

where dinc
mσkaΓ

is given by Equation (10) and the real number ζ is given
by Equation (22).

On the other hand, we know that the Fourier coefficient dinc
mn

corresponding to the incident plane wave satisfies (see Lemma 5.1
p. 247 in [17] or Lemma 3.13 p. 594 in [4]):

∣∣dinc
mn

∣∣ < 4κ

(√
eΓkaΓ

π

)1/4

; as kaΓ →∞ (51)
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where κ ≈ 1.086435 (see (22.14.17), p. 787 in [1]).
The substitution of Equation (51) into Equation (50) leads to the

desired result, and therefore concludes the proof of Theorem 3.1.

5. SUMMARY AND CONCLUSION

We have investigated analytically the asymptotic behavior of the
reflected high-order modes induced by the presence of the so-called
DtN2 absorbing boundary condition when employed for solving
exterior Helmholtz problems with prolate spheroid shaped scatterers.
We proved that, contrary to the situation when the second-order
Balyliss-Gunzburger-Turkel condition (BGT2) is used, these spurious
modes decay exponentially in the high frequency regime. This
result proves the effectiveness of the DtN2 boundary condition when
employed for solving high-frequency acoustic scattering problems by
elongated scatterers. It also demonstrates the superiority of the DtN2
condition over the widely used BGT2 boundary condition. Given that,
this study suggests that DtN2 absorbing boundary condition is the
primary candidate to be employed for solving high frequency scattering
problems by elongated scatterers.
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APPENDIX A. CLASSIFICATION OF THE MODES

A very brief classification of the prolate spheroidal modes umn is
presented in this section. More details can be found in Annexe D
in [17]. The proposed classification has the advantage to coincide with
the standard classification of the spherical modes when the eccentricity
of the prolate tends to 1, that is, the prolate spheroid tend to become a
sphere. Recall that the spherical modes un (n ∈ N) are categorized into
three groups: (a) propagating modes when n < kaΣ, evanescent modes
for n > kaΣ, and grazing modes in the limit case where n ≈ kaΣ [19].
Definition A.1 For all (m, n) ∈ N2 such that m ≤ n, the prolate
spheroidal mode umn is said to be:
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i. a propagating mode if (umn)−1 ∂
∂ξ (sinh ξ ∂umn

∂ξ ) is negative,

ii. an evanescent mode if (umn)−1 ∂
∂ξ (sinh ξ ∂umn

∂ξ ) is positive,

iii. a grazing mode if ∂
∂ξ (sinh ξ ∂umn

∂ξ ) is zero.

The next result states a preliminary characterization of the
classification introduced in Definition A.1.
Proposition A.2 Assume the exterior Boundary Σ to be located at
ξ = ξ1. Then, for all (m, n) ∈ N2 such that m ≤ n, the prolate
spheroidal mode umn is said to be:

i. a propagating mode if λmn|Σ ¿ (kf)2 cosh2 ξ1 − m2

sinh2 ξ1
,

ii. an evanescent mode if λmn|Σ À (kf)2 cosh2 ξ1 − m2

sinh2 ξ1
,

iii. a grazing mode if λmn|Σ ≈ (kf)2 cosh2 ξ1 − m2

sinh2 ξ1
,

where λmn|Σ is the prolate spheroidal eigenvalue associated to the
(mn)th mode (see p. 11 in [9]), and f is the interfocal distance of
the prolate spheroid whose surface is Σ.
Proof of Proposition A.2 First, we apply the Helmholtz operator
to the mode umn (see (B.118) p. 287 in [17]). Hence, we have:

1
sinh ξ

∂

∂ξ

(
sinh ξ

∂umn

∂ξ

)
=

(
λmn−(kf)2 cosh2 ξ+

m2

sinh2 ξ

)
umn (A1)

Then, the proof of Proposition A.2 is an immediate consequence of
substituting

f =
√

a2
Σ − b2

Σ = aΣ cosh ξ−1
1 (A2)

and
eΣ =

1
cosh ξ1

(A3)

into Equation (A1), and then applying Definition A.1.
Consequently, in the high-frequency regime (kaΓ → +∞),

Proposition (A.2) can be formulated as follows.
Corollary A.3 Assume the exterior Boundary Σ to be located at ξ = ξ1

and kaΓ → +∞. Then, for all (m,n) ∈ N2 such that m ≤ n, the
prolate spheroidal mode umn is said to be:

i. a propagating mode if n−m ¿ kaΣ
2eΣ

,

ii. an evanescent mode if n−m À kaΣ
2eΣ

,

iii. a grazing mode if n−m ≈ kaΣ
2eΣ

.
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Proof of Corollary A.3 First, we observe that (see Equation (21.7.6),
p. 754 in [1]) that when kaΓ → +∞ (and therefore kaΣ → +∞), we
have:

λmn|Σ ∼ (2n− 2m + 1)eΣkaΣ (A4)

Hence, it follows from substituting Equations (A2)–(A3) into
Equation (A4), that:

−λmn|Σ + (kf)2 cosh2 ξ1 − m2

sinh2 ξ1

≈ 0; as kaΓ → +∞

which can be re-written as follow:

−(2n−2m+1)eΣkaΣ+(eΣkaΣ)2 cosh2 ξ1− m2

sinh2 ξ1

≈ 0; as kaΓ → +∞

Using Equation (A3) and the fact that eΣkaΣ 6= 0, we deduce that:

n−m ≈ kaΣ

2eΣ
− m2

2eΣkaΣ sinh2 ξ1

− 1
2

Corollary A.3 is then a consequence of retaining the high-order terms
(in bold) of the previous approximation.
Remark A.4 In the particular situation where aΣ = σaΓ, the
classification of the modes given by Corollary A.3 can be formulated
in more convenient way as follows:

Assume the exterior Boundary Σ to be located at ξ = ξ1 and
kaΓ → +∞. Then, for all (m,n) ∈ N2 such that m ≤ n, the prolate
spheroidal mode umn is said to be:

i. a propagating mode if n−m ¿ σkaΓ
2eΓ

,

ii. an evanescent mode if n−m À σkaΓ
2eΓ

,

iii. a grazing mode if n−m ≈ σkaΓ
2eΓ

.

This classification seems to be more convenient for easily
identifying, in the high frequency regime, the type of modes that are
absorbed or not by the DtN2 absorbing boundary condition, as well as
for comparing with the behavior of the modes induced by the standard
BGT2 absorbing boundary condition.
Remark A.5 Observe that it follows from Theorem (4) and
Remark (A.4) that, for the modes such that n ∼ σkaΓ, all three
categories of modes decay exponentially, and therefore are absorbed
very quickly. To better identify such modes, one need to consider
two cases depending on the value of the eccentricity eΣ (= eΓ) of
the prolate spheroidal-shaped exterior boundary Σ. More specifically,
assume the exterior boundary Σ to be located at ξ = ξ1, kaΓ → +∞,
and (m,n) ∈ N2 such that n ∼ σkaΓ with m ≤ n. Then, we have:
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a. For eΣ = eΓ ∈ (0, 5), corresponding to a moderately elongated
scatterer, the mode umn is said to be a propagating for any m
such that 0 ≤ m ≤ n as m À (1− 1

2eΓ
)σkaΓ.

b. If eΣ = eΓ ∈ [0.5, 1), corresponding to an elongated scatterer, the
mode umn is said to be:

i. a propagating mode if σkaΓ ≥ m À (1− 1
2eΓ

)σkaΓ,
ii. an evanescent mode if 0 ≤ m ¿ (1− 1

2eΓ
)σkaΓ,

iii. a grazing mode if m ≈ (1− 1
2eΓ

)σkaΓ.
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de l’Adour, France, 2008. Available online at: http://tel.archives-
ouvertes.fr.

18. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, New York,
1941.

19. Taylor, M. E., Pseudodifferential Operators, Princeton University
Press, Princeton, New Jersey, 1981.

20. Turkel, E., “Boundary conditions and iterative schemes for
the helmholtz equation in unbounded regions,” Computational
Methods for Acoustics Problems, 127–158, F. Magoulès (ed.),
Saxe-Coburg Publications, 2009.


