Vol. 22
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-12-02
Image Compressed Sensing Based on Data-Driven Adaptive Redundant Dictionaries
By
Progress In Electromagnetics Research M, Vol. 22, 73-89, 2012
Abstract
Finding sparsifying transforms is an important prerequisite of compressed sensing (CS) theory. It is directly related to the reconstruction accuracy. In this work, we propose a new dictionary learning (DL) algorithm to improve the accuracy of CS reconstruction. In the proposed algorithm, Least Angle Regression (LARS) algorithm and an approximate SVD method (ASVD) are respectively used in the two stages. In addition, adaptive sparsity constraint is used in the sparse representation stage, to obtain sparser representation coefficient, which further improves the dictionary update stage. With these data-driven adaptive dictionaries as sparsifying transforms for image compressed sensing, results of experiments demonstrate noteworthy outperformance in peak signal-to-noisy ratio (PSNR), compared to CS based on dictionaries learned by K-SVD, in the sampling rate of 0.2-0.5. Besides, visual appearance of reconstruction detail at low sampling rate improves, for reducing of `block' effect.
Citation
Zi Wei Ni, Meixiang Zhang, Jing Li, and Qicong Wang, "Image Compressed Sensing Based on Data-Driven Adaptive Redundant Dictionaries," Progress In Electromagnetics Research M, Vol. 22, 73-89, 2012.
doi:10.2528/PIERM11093004
References

1. Candes, E. J., J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inf. Theory, Vol. 52, No. 2, 489-509, 2006.
doi:10.1109/TIT.2005.862083

2. Donoho, D., "Compressed sensing," IEEE Trans. Inf. Theory, Vol. 52, No. 4, 1289-1306, 2006.
doi:10.1109/TIT.2006.871582

3. Candes, E. J. and T. Tao, "Decoding by linear programming ," IEEE Trans. Inf. Theory, Vol. 51, No. 12, 4203-4215, 2005.
doi:10.1109/TIT.2005.858979

4. Candes, E. J. and M. B. Wakin, "An introduction to compressive sampling," IEEE Signal Process. Mag., Vol. 25, No. 2, 21-30, 2008.
doi:10.1109/MSP.2007.914731

5. Davenport, M., M. Duarte, Y. C. Eldar, and G. Kutyniok, Introduction to Compressed Sensing, Cambridge University Press, 2011.

6. Fornasier, M. and H. Rauhut, Compressive Sensing, Springer, 2011.

7. Tsaig, Y. and D. L. Donoho, "Extensions of compressed sensing," Signal Processing, Vol. 86, No. 3, 549-571, 2006.
doi:10.1016/j.sigpro.2005.05.029

8. Gan, L., "Block compressed sensing of natural images," Proc. Int. Conf. on Digital Signal Processing, 403-406, Cardiff, UK, 2007.

9. Lustig, M., D. Donoho, and J. M. Pauly, "Sparse MRI: The application of compressed sensing for rapid MR imaging," Magn. Reson. Med., Vol. 58, No. 6, 1182-1195, 2007.
doi:10.1002/mrm.21391

10. Candes, E. J., Y. C. Eldar, D. Needell, and P. Randall, "Compressed sensing with coherent and redundant dictionaries," Applied and Computational Harmonic Analysis, Vol. 31, No. 1, 59-73, 2010.
doi:10.1016/j.acha.2010.10.002

11. Rauhut, H., K. Schnass, and P. Vandergheynst, "Compressed sensing and redundant dictionaries," IEEE Trans. Inf. Theory, Vol. 54, No. 5, 2210-2219, 2008.
doi:10.1109/TIT.2008.920190

12. Chen, S. S., D. L. Donoho, and M. A. Saunders, "Atomic decomposition by basis pursuit," SIAM Rev., Vol. 43, No. 1, 129-159, 2001.
doi:10.1137/S003614450037906X

13. Aharon, M., M. Elad, and A. Bruckstein, "K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation," IEEE Trans. Signal Processing, Vol. 54, No. 11, 4311-4322, 2006.
doi:10.1109/TSP.2006.881199

14. Ravishankar, S. and Y. Bresler, "MR image reconstruction from highly undersampled K-space data by dictionary learning," IEEE Trans. Medical Imaging, Vol. 30, No. 5, 1028-1041, 2011.
doi:10.1109/TMI.2010.2090538

15. Bilgin, A., Y. Kim, F. Liu, and M. S. Nadar, "Dictionary design for compressed sensing MRI," Proc. ISMRM, 2010.

16. Xu, T. T., Z. Yang, and X. Shao, "Adaptive compressed sensing of speech signal based on data-driven dictionary," Conf. 15-th Asia-Pacific, 2009.

17. Pati, Y. C., R. Rezaiifar, and P. S. Krishnaprasad, "Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition," Proc. AsilomarSS, Vol. 1, 40-44, 1993.

18. Tibshirani , R., "Regression shrinkage and selection via the lasso," J. Royal. Statist. Soc. B, Vol. 58, No. 1, 267-288, 1996.

19. Gorodnitsky, I. and B. Rao, "Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm," IEEE Trans. Signal Processing, Vol. 45, No. 3, 600-616, 1997.
doi:10.1109/78.558475

20. Wipf, D. P. and B. D. Rao, "Sparse Bayesian learning for basis selection," IEEE Trans. Signal Processing, Vol. 52, No. 8, 2153-2164, 2004.
doi:10.1109/TSP.2004.831016

21. Tropp, J. A. and S. J.Wright, "Computational methods for sparse solution of linear inverse problems," Proc. IEEE (Special Issue on Applications of Sparse Representation and Compressive Sensing), Vol. 98, No. 6, 948-958, 2010.

22. Elad, M. and M. Aharon, "Image denoising via sparse and redundant representations over learned dictionaries," IEEE Trans. Image Process., Vol. 15, No. 12, 3736-3745, 2006.
doi:10.1109/TIP.2006.881969

23. Protter, M. and M. Elad, "Image sequence denoising via sparse and redundant representations," IEEE Trans. Image Process. , Vol. 18, No. 1, 27-36, 2009.
doi:10.1109/TIP.2008.2008065

24. Mairal, J., M. Elad, and G. Sapiro, "Sparse representation for color image restoration," IEEE Trans. Image Process., Vol. 17, No. 1, 53-69, 2008.
doi:10.1109/TIP.2007.911828

25. Mairal, J., G. Sapiro, and M. Elad, "Learning multiscale sparse representations for image and video restoration," SIAM Multiscale Model. Simulat., Vol. 7, No. 1, 214-241, 2008.
doi:10.1137/070697653

26. Bryt, O. and M. Elad, "Compression of ficial images using the K-SVD algorithm," J. Visual Communication and Image Representation, Vol. 19, No. 4, 270-283, 2008.
doi:10.1016/j.jvcir.2008.03.001

27. Olshausen, B. A. and D. J. Field, "Sparse coding with an overcomplete basis set: A strategy employed by V1?," Vis. Res., Vol. 37, No. 23, 3311-3325, 1997.
doi:10.1016/S0042-6989(97)00169-7

28. Engan, K., S. Aase, and J. Hakon Husoy, "Method of optimal directions for frame design," Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP'99), 1999.

29. Tosic, I. and P. Frossard, "Dictionary learning," IEEE Signal Process. Mag., Vol. 28, No. 2, 27-38, 2011.
doi:10.1109/MSP.2010.939537

30. Donoho, D. L. and M. Elad, "Optimally sparse representation in general (non-orthogonal) dictionaries via minimization," Proc. Nat. Aca. Sci., Vol. 100, No. 5, 2197-2202, 2003.
doi:10.1073/pnas.0437847100

31. Gribonval, R. and M. Nielsen, "Sparse representation in unions of bases," IEEE Trans. Inf. Theory, Vol. 49, No. 12, 3320-3325, 2003.
doi:10.1109/TIT.2003.820031

32. Tropp, J. A., "Greed is good: Algorithmic results for sparse approximation," IEEE Trans. Inf. Theory, Vol. 50, No. 10, 2231-2242, 2004.
doi:10.1109/TIT.2004.834793

33. Efron, B., T. Hastie, I. Johnston, and R. Tibshirani, "Least angle regression," Ann. Statist., Vol. 32, No. 2, 407-499, 2004.
doi:10.1214/009053604000000067

34. Rubinstein, R., M. Zibulevsky, and M. Elad, "Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit," Technical Report-CS Technion., 2008.

35. Chen, Y., X. Ye, and F. Huang, "A novel method and fast algorithm for MR image reconstruction with significantly under-sampled data," Inverse Problems Image, Vol. 4, No. 2, 223-240, 2010.
doi:10.3934/ipi.2010.4.223

36. Ji, S., Y. Xue, and L. Carin, "Bayesian compressive sensing ," IEEE Trans. Signal Processing, Vol. 56, No. 6, 2346-2356, 2008.
doi:10.1109/TSP.2007.914345

37. Babacan, S. D., R. Molina, and A. K. Katsaggelos, "Bayesian compressive sensing using Laplace priors," IEEE Trans. Image Process., Vol. 19, No. 1, 53-63, 2010.
doi:10.1109/TIP.2009.2032894