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Abstract—Finding sparsifying transforms is an important prerequi-
site of compressed sensing (CS) theory. It is directly related to the
reconstruction accuracy. In this work, we propose a new dictionary
learning (DL) algorithm to improve the accuracy of CS reconstruc-
tion. In the proposed algorithm, Least Angle Regression (LARS) algo-
rithm and an approximate SVD method (ASVD) are respectively used
in the two stages. In addition, adaptive sparsity constraint is used in
the sparse representation stage, to obtain sparser representation coeffi-
cient, which further improves the dictionary update stage. With these
data-driven adaptive dictionaries as sparsifying transforms for image
compressed sensing, results of experiments demonstrate noteworthy
outperformance in peak signal-to-noisy ratio (PSNR), compared to CS
based on dictionaries learned by K-SVD, in the sampling rate of 0.2–
0.5. Besides, visual appearance of reconstruction detail at low sampling
rate improves, for reducing of ‘block’ effect.

1. INTRODUCTION

Compressed sensing theory indicates that if sparifying transforms can
be found, the original signal can be exactly reconstructed through a
set of random linear measurements [1–6]. As the sparsity is the key
to achieve accurate CS reconstruction, researchers have studied and
developed sparsifying transforms with continuous efforts [7–9]. In fact,
the sparser the signal representation is, the more accurately the original
signal can be recovered [10, 11].

At present, the study of CS still mostly concentrates in fixed
orthogonal basis. Tsaig and Donoho in [7] achieve CS reconstruction
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based on orthogonal wavelet transform. However, for lacking of
translation and rotation invariance, it is not enough to capture the
various features of image. Hence, Cands et al. [10] and Rauhut et
al. [11] extend CS to redundant dictionaries. They show that if the
signal is sparse under a redundant dictionary, and the combination of
the dictionary and some random sampling matrix satisfies Restricted
Isometry Property (RIP) [1, 3, 4], then CS can still implement via the
existing reconstruction algorithms, such as Basis Pursuit (BP) [12].
Obviously, the sparsity of signal can be enhanced using redundant
dictionaries, and recovery of original signal can be achieved from less
measurements with higher probability.

Recently, there are studies, which take dictionaries learned
by K-SVD algorithm [13] as sparsifying transform to improve CS
reconstruction accuracy improvement. Ravishankar et al. [14] use
K-SVD for highly undersampled magnetic resonance (MR) image
reconstruction, and experiments show increase of PSNR by 4–18 dB
compared with algorithm in [9]. Bilgin et al. [15] use a K-SVD
patch dictionary in iterative hard thresholding (IHT) and improve
the reconstruction signal-to-noise ratio (SNR) for 1.5 dB compared
to wavelet-IHT. Xu et al. [16] learn a over-complete data-driven
dictionary via K-SVD, specialized for speech signals, to obtain superior
performance, compared to CS with redundant discrete cosine transform
(RDCT) and redundant discrete wavelet transform (RDWT).

However, K-SVD algorithm, in which greedy algorithms com-
monly used in the sparse representation stage, such as orthogonal
matching pursuit (OMP) [17], easily results the whole dictionary learn-
ing algorithm in entrapping into a local optimum. Alternatively, the
convex relaxation strategies, such as BP and LASSO [18], are too much
slower than OMP, although they can get the sparest solution. And sin-
gular value decomposition (SVD) searching for exact solutions in the
dictionary update stage is not necessary. Besides, the stopping criteria
in the sparse representation stage is fixed in the whole DL process.

Therefore, in this paper, we exploit a novel dictionary learning
algorithm, aiming to relieve the above limitations of K-SVD. In the
sparse representation stage, LARS is used to obtain sparser coefficient
for the consequent dictionary update stage. And for simplification,
we use an approximate SVD (ASVD) for dictionary update stage.
Furthermore, adaptive sparsity is used by associating the maximal
number of atoms in the sparse representation stage with the iterated
updated dictionaries. In this work, we use dictionaries learned by this
method as sparsifying transforms of image compressed sensing.

The rest of this paper is organized as follows. Section 2 describes
the related work in CS theory and dictionary learning algorithm briefly.
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The proposed algorithm based on data-driven adaptive redundant
dictionary learning is detailed in Section 3. Section 4 demonstrates the
performance of our algorithm on examples. In Section 5, we conclude
with possible topics for future work.

2. COMPRESSED SENSING THEORY AND
DICTIONARY LEARNING

2.1. Compressed Sensing

In this paper, we consider CS with measurement noise. Given a real
value signal x ∈ RN , the CS model can be expressed as

min
α
‖ΦΨα− y‖2

2 + λ‖α‖1 (1)

where λ is the Lagrangian multiplier, Φ ∈ Rm×N (m ¿ N) is the
random sampling matrix, y is the corresponding linear measurements,
Ψ ∈ RM×N is sparsifying transform, and α is sparse coefficient.

A number of heuristic methods can be used to solve this
problem. Replace the `1 norm with `0 norm, though the problem
becomes a NP-hard problem, greedy algorithms, such as OMP,
can obtain approximate solution with relatively small computer
time. For formulation (1), the minimization problem can also be
solved via linear programming algorithms such as BP, least absolute
shrinkage method and LASSO. Besides, there exists other sparse
approximation algorithms such as the focal underdetermined system
solver (FOCUSS) [19] and sparse Bayesian learning [20]. A recent
review of the sparse coding algorithms can be found in [21].

In the above model, the sparsifying transform Ψ is one of the two
critical parts of CS. From work [4], we know that the representation
coefficients of signals will be reconstructed from CS, if they decay
like a power-law under a transform. The decay rate of coefficients
is a criterion for judging sparsifying transforms ability. Recently,
studies in image processing show that superior results have obtained,
as signal can be represented sparser under those dictionaries learned
from specific samples [22–26].

2.2. Dictionary Learning

For data-driven dictionaries, DL algorithms is the key point. Given a
training set Y = {yi}N

i=1 which contains N samples, X = {xi}N
i=1 is the

corresponding coefficient. Then, the DL process is to find a possible
optimal dictionary for sparse representation of training samples Y . It
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(a) (b)

Figure 1. (a) Image “peppers”; (b) an dictionary learned from (a).

can be expressed as

min
D,X

‖Y −DX‖2
F s.t. ∀i, ‖xi‖0 ≤ T0 (2)

where T0 is the maximum number of atoms used in sparse
representation stage. Figure 1(b) is an example of 64× 256 dictionary
learned by our DL method, here the training set is 8×8 natural image
patches randomly extracted from Figure 1(a). In the simulations in
Section 4, training sets are patches extracted from variant images
different from the test image. In Figure 1(b), each atom in the
redundant dictionary is displayed as an 8× 8 element.

The DL problem in (2) is also a NP-hard problem. To solve
this problem, researchers have proposed many algorithms, such as
Maximum Likelihood methods [27], Method of Optimal Directions
(MOD) [28], K-SVD and so on. Tosic et al. give a review of these
methods in [29]. Among these algorithms, the K-SVD can implement
conveniently and effectively.

K-SVD algorithm is implemented by iterating of the following two
steps. In the sparse representation step, D is assumed to be fixed.
Thus, the minimization problem in (2) can be decomposed into N
separate problems in the following formulation

min
xi

‖yi −Dxi‖2
2 s.t. ‖xi‖0 ≤ T0, for i = 1, 2, . . . , N (3)

these problems is classically solved by OMP in K-SVD. In the
dictionary update step, both X and D are assumed to be fixed,
and only the kth column dk in the dictionary D is updated with its
corresponding representation coefficients xk

T . Recalling to the problem
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in (2), the penalty function becomes

‖Y −DX‖2
F =

∥∥∥∥∥∥
Y −

K∑

j=1

djx
j
T

∥∥∥∥∥∥

2

F

=

∥∥∥∥∥∥


Y −

∑

j 6=k

djx
j
T


− dkx

k
T

∥∥∥∥∥∥

2

F

= ‖Ek − dkx
k
T ‖2

F (4)

the solving of (4) is achieved by SVD. The whole K-SVD algorithm
iterates between the two stages until convergence, obtaining dictionary
D, of which each atom has unit norm. More details about K-SVD can
be seen in [13].

3. THE PROPOSED ALGORITHM

Since DL algorithm can always be treated as iterations of sparse
representation stage and dictionary update stage, we will follow these
two stages to describe the proposed DL algorithm at first.

3.1. Sparse Representation Stage

In this stage, we associate the sparsity constraint with the current
dictionary (the iterated updated dictionary) firstly, to obtain an
adaptive sparsity constraint. That means replacing T0 in (3) with
Tj . Tj denotes

Tj =
⌈

1
2

(
1 +

1
µ(Dj)

)⌉
for j = 1, 2, . . . , P (5)

where µ(D) is mutual coherence, expressed as

µ(D) : = max
i6=j,1≤i,j≤n

{
DT

i Di

‖Di‖2‖Dj‖2

}
(6)

It is shown that if inequality (5) holds, the solution X of the
minimization problem (3) obtained by OMP will be the sparsest and
unique, and it is the same at X of the `1 alternative obtained by
BP [30–32].

In this way, the sparsity upper-bound is adaptive with updated
dictionaries, and the reconstruction errors can decrease iteratively.
Besides, we replace its `0 norm in (3) with `1 norm. Then the problem
posed in (3) becomes Lasso’s problem

min
xi

{‖yi −Djxi‖2
2} s.t. ‖xi‖1 ≤ Tj ,

for i = 1, 2, . . . , N ; j = 1, 2, . . . , P (7)
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Here we use LARS with LASSO modification [33], of which
computational complexity is close to greedy algorithms to solve the
Lasso problem.

Assuming A is a subset of the indices {1, 2, . . . , k}, meaning
A ∈ {1, 2, . . . , k}, DjA is columns extracted from Dj corresponding
to A and let it be equidirectional with Y , XA is the current solution,
and algorithm moves toward the equiangular vectors uA = DjAwA, in
the moving process, the solution increase is

XA(γ) = XA + γwA (8)

where wA = (1T
A(DT

jADjA)−11A)−
1
2 (DT

jADjA)−11A, and γ is step.
When signs of Xi and ci are opposite, then signs between Xi and
wi are opposite, where ci is correlation between the current covariate
and variable Y . As γi = −Xi

wi
, then the opposite sign step appearing

earliest is

γ̃ =
+

min
i∈A

{
−Xi

wi

}
(9)

when γ̃ < γ̂, the corresponding î should be removed out of A, where γ̂
is step among equiangular direction uA.

LARS algorithm and LARS with Lasso modification can be seen
in detail in [33].

3.2. Dictionary Update Stage

Given a fixed sparse matrix X, obtained in the above stage, dictionary
update can be derived by solving the following problem

min
D
{Y −DX}2

F (10)

Typically, the above optimization problem can be solved efficiently
using the SVD.

However, exact solver of SVD is not usually required here. The
entire K-SVD algorithm only converges to a local minimum rather
than a global optimal solution. Therefore, replacing SVD with a
faster approximate SVD (ASVD) is a wise choice. ASVD proposed
in [34] use a simple iteration between an atom dk and its corresponding
representation coefficient xk

T to solve problem in (10). The iteration is
given as follows

dk = Ekxk/‖Ekxk‖2,

xk = (Ek)T dk

(11)

In this way, the result is still very close to the exact SVD solution.
Detailed description of the algorithm refers to [34].



Progress In Electromagnetics Research M, Vol. 22, 2012 79

Given a
√

N × √
N large size image I. Divide it into

nonoverlapping patches with
√

n×√n (n ¿ N) pixels, and each block
is turned into column Iij ∈ Rn, where i, j is the position of the top-left
pixel of each patch in the large image respectively. For each patch, the
corresponding measurements vector of CS is vij = ΦIij + εij , where
εij is the random noise in measurement process. In the compressed
sensing process, we assume that each patch Iij can be represented by
a linear combination of Dαij , where αij ∈ RK is sparse, D ∈ Rn×K

(n < K) (dictionary is redundant and each atom of D has unit norm).
The scheme of image compressed sensing based on the proposed DL
method is presented in Algorithm 1.

Table 1. Algorithm 1.

Algorithm 1: image compressed sensing based on data-driven

adaptive redundant dictionaries

1. Input: training samples Y , initial dictionary D0, initial

sparsity T0, number of iterations P , measure matrix Φ,

linear measurement vij .

2. Output: reconstructed image Î.

3. use RDCT as the initial dictionary D = D0 and obtain the

initial sparsity T = T0 using Equation (5).

4. for j = 1, . . . , P

5. fixed current Dj−1 and sparsity constraint Tj−1, obtain

the sparse coefficient Xj corresponding to training

samples Y , using Equation (7)

6. given Xj , update dictionary Dj , using Equation (11)

7. compute the sparsity Tj , using Equation (5)

8. end

9. given Φ, vij , obtain coefficient α̂ij in sparsifying transform

D = DP , using Equation (1)

10. obtain the reconstructed image patches, by Îij = Dα̂ij

11. rebuild the reconstructed image Î form Îij
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4. EXPERIMENTS RESULTS AND ANALYSIS

In this section, we carry out two experiments on natural images. All
implementations involved in the experiments are coded in Matlab
R2009a. Computations are performed on Window 7 operating system
with Intel Core 2 CPU at 2.8 GHz and 2GB memory.

Like Chen et al. [35], we learn redundant dictionaries using the
training samples at first. The four kinds of 64 × 256 dictionaries
being considered here include: (a) LARS + ASVD + ADDAPTIVEL
denotes learning dictionaries by the proposed DL algorithm; (b) LARS
+ ASVD denotes learning dictionaries by algorithm, of which the
sparse representation stage adopts LARS and the dictionary update
stage adopts ASVD; (c) learning dictionaries by K-SVD algorithm;
(d) a dictionary based on scaling and translation of pre-defined basis
functions, RDCT. All of the dictionaries in (a)–(c) are initialized by
RDCT, and the number of iterations is 10. Besides, for each sample,
at most 10 coefficients are used for sparse representation stage in (b)
and (c). The K-SVD toolbox used here can be found in [13].

4.1. More Efficient on Sparse Representation

In this experiment, Here, the ‘1-0001.png’ is used as test image, seen
in the bottom right corner of Figure 2. The remaining 2413 images
in the extended Yale database B are used for randomly extracting the
48260 8 × 8-pixel training patches, 20 patches from each image. The
192× 168 test image is divided into 8× 8 nonoverlapping blocks, and
each is added with Gaussian random noise, whose the variance is 0.005.

As Figure 2 shows, we can see that all of these four dictionaries
can represent the test image well when the sparsity increases to 10 for
each nonoverlapping block, where sparsity is the maximum number of
non-zeros coefficients obtained by sparse representation with OMP.
However, in the cases of lower sparsity, the dictionary learned by
the proposed DL algorithm outperforms the other three obviously.
Compared (a) with (b), we can find the adaptive sparsity exploited
in DL process has great effect on efficient representation of image. See
of course, (b) is only a little better than (c). This demonstrates the
proposed method can represent image more efficient, and this property
can produce superior PSNR during CS reconstruction.

4.2. Improvement on Accuracy in Image Compressed
Sensing

This experiment consists of two parts: CS for MR image; CS for
standard gray-scale image. The test 512 × 512 images are divided
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Figure 2. Comparison of the sparse representation recovery mean
square error (MSE).

into 8× 8 nonoverlapping blocks {xi}i=1,...,NB
as well. Assuming that

xi can be represented by linear combination of xi = Dαi. For each
of the NB patches, the measurement vector is vi = Φxi + εi, where
εi is Gaussian random noise, of which the variance is 0.005. In this
experiment, the elements of Φ are randomly constructed from N(0, 1),
of course, other similar random measurement matrix in [1] can be used.
The PSNR is used as an objective criterion, and visual appearance of
reconstruction detail is also considered as a measure. Here, we also
consider the four kinds of D in (a)–(d).

In both of the two subsections, the sampling matrices Φ measure
the patches randomly, and the sampling rates ( m

64 in this section)
are 0.1, 0.2, 0.3, 0.4 and 0.5 respectively. The CS reconstruction
algorithms used here include: BP, LARS, Bayesian Compressive
Sensing (BCS) [36], Bayesian compressive sensing using Laplace
priors (LAPLACE) [37], and OMP, where BP stops when reaching
a maximum iterations number of 20; BCS and LAPLACE stop when
the reconstruction error is less than 10−8; and LARS and OMP stop
when the used atoms reach 10. The values of PSNR(dB) are averaged
over 5 executions.
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4.2.1. CS with MR Image

In this subsection, the MR image, seen in the bottom right corner of
Figure 3, is used as test image, and the 39988 8 × 8-pixel training
patches are extracted from other 52 MR images different from the test
image. These training images are different in resolution and contents.

From Figure 3, compared (b) with (c), the CS reconstruction
performance with (b) is better than that with (c), while at most 10
coefficients are used for sparse representation stage in both of them, so
we infer that the LARS in sparse representation stage and the ASVD in
dictionary update stage is the reason for superiority of (b). And then,
compared (a) with (b), the outperformance of (a) is obvious, in fact, (a)
is just joins (b) with adaptive sparsity in sparse representation stage,
from this, the importance of adaptive sparsity played on dictionary

Figure 3. Comparison of CS reconstruction PSNR.

Table 2. PSNR of our method compared with CS based on K-SVD
dictionary in various sampling rate.

Method/sampling rate 0.1 0.2 0.3 0.4 0.5

(a) our method 25.23022 32.97324 39.45011 42.76209 45.20174

(c) based on K-SVD 24.707 28.3123 33.5869 39.7406 42.3045

(a)–(c) dB 0.5232 4.6609 5.8632 3.0215 2.8972
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learning can be seen. In summary, it is reliable to conclude that our
dictionary learning method can find better dictionary for CS.

In Table 2, we compared our method with CS based on K-SVD
dictionary in numerical form. It is clear that our method improves the
CS reconstruction PSNR about 2.9–5.86 dB compared to K-SVD, when
the sampling rate among 0.2 to 0.5. when the sampling rate is very

Figure 4. Comparison visual appearance of CS reconstruction details.

Figure 5. Reconstruction of our method compared to CS based on
K-SVD dictionary by BP, OMP, BCS, LAPLACE, and LARS.
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low, 0.1, advantage of our method become unconspicuous, however,
this is because the sampling rate is too low to well reconstruct for any
algorithm.

Figure 4 shows visual appearance of reconstruction details for the
left-bottom 1/4 of the test image. The up row is reconstruction of our
method, and the bellow is CS based on K-SVD dictionary. From left
to right, the sampling rate is 0.2–0.5 respectively. We can find ‘block’
effect of CS based on K-SVD dictionary, is serious at sampling rate 0.2
and 0.3, while our method can reduce the effect to certain extent.

Furthermore, in Figure 5, we show the superiority of our method
compared to CS based on K-SVD dictionary is consistent by various
CS reconstruction algorithms. However, because of the limitation
of OMP, the results of both method reconstructed by it is not that
gratifying. Anyway, dictionary learned by our method do outperform
K-SVD dictionary. Besides, the differences of results among various
reconstruction algorithms may effect by the stopping criterion. But
here, we mainly concentrate on compare between our method and CS
based on K-SVD dictionary. So we do not discuss it in detail here.

4.2.2. CS with Standard Gray-scale Image

Similar to the Subsection 4.2.1, in this subsection, we use a standard
gray-scale image as test image, seen in the bottom right corner of

Figure 6. Comparison of reconstruction PSNR.
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Figure 6. The 40000 8 × 8-pixel training patches are extracted from
10 standard images different from the test image, here these training
images are of same resolution while variant contents.

Figure 6 shows outperformance of our method, compared to CS
based on K-SVD dictionary, and RDCT. Here, the results based on
K-SVD only get slightly advantage, compared to CS based on RDCT
dictionary. We could infer that our dictionary learning algorithm has
much more potential of improving a given initial dictionary.

In Table 3, we compare our method with CS based on K-SVD
dictionary in numerical form. It is clear that our method improves
the CS reconstruction PSNR about 0.93–2.65 dB compared to K-SVD,
when the sampling rate among 0.1 to 0.5.

Figure 7 shows visual appearance of reconstruction details for the
upper-right 1/4 of the test image. The up row is reconstruction of our
method, and the bellow is CS based on K-SVD dictionary. From left
to right, the sampling rate is 0.2–0.5 respectively. We can find ‘block’
effect of CS based on K-SVD dictionary, is a little serious at sampling
rate 0.2, while our method can reduce the effect to certain extent.

From Figure 8, we can see that like results in Figure 5, the

Table 3. PSNR of our method compared with CS based on K-SVD
dictionary in various sampling rate.

Method/sampling rate 0.1 0.2 0.3 0.4 0.5

(a) our method 24.8599 28.4606 31.4155 33.3128 34.3633

(c) based on K-SVD 23.9284 26.4215 28.7654 31.4739 32.8383

(a)–(c) dB 0.9315 2.0391 2.6501 1.8389 1.525

Figure 7. Comparison visual appearance of CS reconstruction details.
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Figure 8. Reconstruction of our method compared to CS based on
K-SVD dictionary by BP, OMP, BCS, LAPLACE, and LARS.

superiority of our method compared to CS based on K-SVD dictionary
is consistent by various CS reconstruction algorithms. Though there
are much differences among various reconstruction algorithms.

In a word, the results in this subsection agree with the ones
in the above subsection, meaning that our method does have its
outperformance.

5. CONCLUSION

In this paper, we present a novel method for learning patch-sparse
data-driven adaptive redundant dictionaries to improve the accuracy
of CS reconstruction. In the proposed DL algorithm, LARS with
LASSO modification and adaptive sparsity constraint are used in
the sparse representation stage, and ASVD is used in the following
dictionary update stage. Experiments show that the CS reconstruction
performance is improved both in PSNR and visual appearance,
compared to CS based on K-SVD dictionaries. Since the image is
treated as blocks, ‘block’ effect is clear at low sampling rate. In the
future, we will try hard to solve this problem. Besides, we will apply
the dictionary learning method to face recognition and CSMRI, and
the work is ongoing.
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