Vol. 121
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-11-01
Using Nanoparticles for Enhancing the Focusing Heating Effect of an External Waveguide Applicator for Oncology Hyperthermia: Evaluation in Muscle and Tumor Phantoms
By
Progress In Electromagnetics Research, Vol. 121, 343-363, 2011
Abstract
A technical challenge in hyperthermia therapy is to locally heat the tumor region up to an appropriate temperature to destroy cancerous cells, without damaging the surrounding healthy tissue. Magnetic fluid hyperthermia (MFH) is a novel, minimally invasive therapy aiming at concentrating heat inside cancerous tissues. This therapy is based on the injection of different superparamagnetic nanoparticles inside the tumor. In our study, superparamagnetic nanoparticles, which we developed and characterized, consisted of iron oxide nanoparticles stabilized with polyethylene glycol. Moreover, a new technique for MFH using a specially designed external electromagnetic waveguide as applicator is presented. Three magnetite concentrations were used for making the tumor phantoms, which were embedded in muscle phantoms. The phantoms were radiated and located at three different distances from the applicator. Furthermore, two volumes of tumor (2.5 mL and 5.0 mL) were assayed. Heating curves, as a function of time, allowed the establishment of a more appropriate nanoparticle concentration for obtaining the temperature increase suitable for hyperthermia therapy. The results shown in this paper confirm the feasibility of using nanoparticles as agents to focus the energy over the tumor, without creating hot spots in healthy tissue. In addition, the experiments validated that by using this applicator in combination with nanoparticles, it is also possible to locally control the increments of temperature in tissues.
Citation
Citlalli Jessica Trujillo-Romero, Sonia Garcia-Jimeno, Arturo Vera-Hernandez, Lorenzo Leija-Salas, and Joan Estelrich, "Using Nanoparticles for Enhancing the Focusing Heating Effect of an External Waveguide Applicator for Oncology Hyperthermia: Evaluation in Muscle and Tumor Phantoms," Progress In Electromagnetics Research, Vol. 121, 343-363, 2011.
doi:10.2528/PIER11092911
References

1. Falk, M. H. and R. D. Issels, "Hyperthermia in oncology," International Journal of Hyperthermia, Vol. 17, 1-18, Jan. 2001.
doi:10.1080/02656730150201552

2. Hildebrandt, B., P. Wust, O. Ahlers, et al. "The cellular cellular and molecular basis of hyperthermia," Crit. Rev. Oncology/Hematology, Vol. 43, 33-56, Jul. 2002.
doi:10.1016/S1040-8428(01)00179-2

3. Gupta, R. C. and S. P. Singh, "Elliptically bent slotted waveguide conformal focused array for hyperthermia treatment of tumors in curved region of human body," Progress In Electromagnetics Research, Vol. 62, 107-125, 2006.
doi:10.2528/PIER06012801

4. Gong, Y. and G. Wang, "Superficial tumor hyperthermia with flat left-handed metamaterial lens," Progress In Electromagnetics Research, Vol. 98, 389-405, 2009.
doi:10.2528/PIER09091401

5. Arruebo, M., R. Fernádez-Pacheco, M. R. Ibarra, and J. Santamaría, "Magnetic nanoparticles for drug delivery," Nano Today, Vol. 2, No. 3, 22-32, 2007.
doi:10.1016/S1748-0132(07)70084-1

6. Pankhurst, Q. A., J. Connolly, S. K. Jones, and J. Dobson, "Applications of magnetic nanoparticles in biomedicine," Journal of Physics D: Applied Physics, Vol. 36, No. 13, 167, 2003.
doi:10.1088/0022-3727/36/13/201

7. Babincová, M., P. Cicanec, V. Altanerová, C. Altaner, and P. Babinec, "AC-magnetic field controlled drug release from magnetoliposomes: Design of a method for site-specific chemotherapy," Bioelectrochemistry, Vol. 55, No. 1-2, 17-19, 2002.
doi:10.1016/S1567-5394(01)00171-2

8. Babincová, M., V. Altanerova, C. Altaner, C. Bergemann, and P. Babinec, "In vitro analysis of cisplatin functionalized magnetic nanoparticles in combined cancer chemotherapy and electromagnetic hyperthermia," IEEE Transactions on Nanobioscience, Vol. 7, No. 1, 15-19, 2008.
doi:10.1109/TNB.2008.2000145

9. Luong, T. T., T. P. Ha, L. D. Tran, M. H. Do, T. T. Mai, N. H. Pham, H. B. T. Phan, G. H. T. Pham, N. M. T. Hoang, Q. T. Nguyen, and P. X. Nguyen, "Design of carboxylated fe3o4/poly(styrene-co-acrylic acid) ferrouids with highly efficient magnetic heating effect," Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 384, No. 1-3, 23-30, 2011.
doi:10.1016/j.colsurfa.2011.02.050

10. Hiergeist, R., W. Andra, N. Buske, R. Hergt, I. Hilger, U. Richter, and W. Kaiser, "Application of magnetite ferrouids for hyperthermia," Journal of Magnetism and Magnetic Materials, Vol. 201, 420-422, 1999.
doi:10.1016/S0304-8853(99)00145-6

11. Duguet, E., S. Vasseur, S. Mornet, and J.-M. Devoisselle, "Magnetic nanoparticles and their applications in medicine," Nanomedicine, Vol. 1, No. 2, 157-168, 2006.
doi:10.2217/17435889.1.2.157

12. Thomas, L. A., L. Dekker, M. Kallumadil, P. Southern, M. Wilson, S. P. Nair, Q. A. Pankhurst, and I. P. Parkin, "Carboxylic acid-stabilised iron oxide nanoparticles for use in magnetic hyperthermia," J. Mater. Chem., Vol. 19, 6529-6535, 2009.
doi:10.1039/b908187a

13. Laurent, S., D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, and R. N. Muller, "Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications ," Chemical Reviews, Vol. 108, No. 6, 2064-2110, 2008.
doi:10.1021/cr068445e

14. Rovers, S. A., R. Hoogenboom, M. F. Kemmere, and J. T. F. Keurentjes, "Relaxation processes of superparamagnetic iron oxide nanoparticles in liquid and incorporated in poly (methyl methacrylate)," The Journal of Physical Chemistry C, Vol. 112, No. 40, 15643-15646, 2008.
doi:10.1021/jp805631r

15. Ingrid, H., et al. "Magnetic nanoparticles for selective heating of magnetically labelled cells in culture: preliminary investigation ," Nanotechnology, Vol. 15, 1027, 2004.

16. Rudolf, H., et al. "Magnetic particle hyperthermia: Nanoparticle magnetism and materials development for cancer therapy," J. Phys.: Condens. Matter, Vol. 18, 2919, 2006.

17. Wiersma, J. and J. D. V. Dijk, "RF hyperthermia array modelling; validation by means of measured em-field distributions," International Journal of Hyperthermia, Vol. 17, No. 1, 63-81, 2001.
doi:10.1080/02656730150201606

18. Nilsson, P., T. Larsson, and B. Persson, "Absorbed power distributions from two tilted waveguide applicators," International Journal of Hyperthermia, Vol. 1, No. 1, 29-43, 1985.
doi:10.3109/02656738509029272

19. Gardner, R., H. Vargas, J. Block, C. Vogel, A. Fenn, G. Kuehl, and M. Doval, "Focused microwave phased array thermotherapy for primary breast cancer," Annals of Surgical Oncology, Vol. 9, 326-332, 2002.
doi:10.1007/BF02573866

20. Durney, C., C. Johnson, P. Barber, H. Massoudi, M. Iskander, S. Allen, and J. Mitchell, Radiofrequency Radiation Dosimetry Handbook, USAF School of Aerospace Medicine, 1986.

21. Pennes, H. H., "Analysis of skin, muscle and brachial arterial blood temperatures in the resting normal human forearm," Am. J. Med. Sci., Vol. 215, No. 3, 354, 1948.

22. Skumiel, A., A. Jozefczak, M. Timko, P. Kopcansky, F. Herchl, M. Koneracka, and T. N., "Heating effect in biocompatible magnetic fluid," International Journal of Thermophysics, Vol. 28, No. 5, 1461-1469, 2007.
doi:10.1007/s10765-006-0138-y

23. Gabriel, C., Compilation of the dielectric properties of body tissues at RF and microwave frequencies, Report N.AL/OE-TR-1996-0037, Occupational and environmental health directorate, Radiofrequency Radiation Division, Brooks Air Force Base, Texas, USA, Jun. 1996.

24. Iero, D., T. Isernia, A. F. Morabito, I. Catapano, and L. Crocco, "Optimal constrained field focusing for hyperthermia cancer therapy: A feasibility assessment on realistic phantoms," Progress In Electromagnetics Research, Vol. 102, 125-141, 2010.
doi:10.2528/PIER10011207

25. Lai, J. C. Y., C. B. Soh, E. Gunawan, and K. S. Low, "Homogeneous and heterogeneous breast phantoms for ultra-wideband microwave imaging applications," Progress In Electromagnetics Research, Vol. 100, 397-415, 2010.
doi:10.2528/PIER09121103

26. Yoo, D.-S., "The dielectric properties of cancerous tissues in a nude mouse xenograft model ," Bioelectromagnetics, Vol. 25, 492-497, 2004.
doi:10.1002/bem.20021

27. Trujillo-Romero, C. J., L. Leija, and A. Vera, "FEM modeling for performance evaluation of an electromagnetic oncology deep hyperthermia applicator when using monopole, inverted T, and plate antennas," Progress In Electromagnetics Research, Vol. 120, 99-125, 2011.