Vol. 35
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-11-02
A Compact UWB Antenna with Dual Band Rejection
By
Progress In Electromagnetics Research B, Vol. 35, 389-405, 2011
Abstract
In this communication, a new compact UWB monopole antenna with dual band rejection is presented. The antenna is designed using FR4 substrate with dielectric constant 4.4, loss tangent 0.02 and a height of 1.59 mm. Initially the UWB antenna is designed to obtain a 153% fractional bandwidth from 2.4 GHz-21.7 GHz. The ground plane beneath the patch is etched out and a rectangular slot is introduced to obtain a broadband matching over the operating frequency range. Later the antenna is modified to get a frequency notch in the IEEE802.11a and HIPERLAN/2 WLAN operating band (5.15 GHz-5.825 GHz) to avoid potential interference. A U shaped slot is optimally introduced in the patch to get the desired performance. Finally an L shaped slot is cut from the radiating patch to filter the frequency band 3.3 GHz-3.6 GHz, which is WiMAX service band. The antenna parameters are optimized and the effects of parametric variation on antennas performance are studied and the summary is presented. The antenna is fabricated and measured results are presented. The measured results are in well agreement with the simulated results.
Citation
Pramendra Tilanthe, Pramod Chandra Sharma, and T. K. Bandopadhyay, "A Compact UWB Antenna with Dual Band Rejection," Progress In Electromagnetics Research B, Vol. 35, 389-405, 2011.
doi:10.2528/PIERB11092204
References

1. FCC Report and Order for Part 15 Acceptance of Ultra Wideband (UWB) Systems from 3.1--10.6 GHz, FCC,Washington, DC, 2002.
doi:10.1109/TAP.2008.917018

2. Wu, Q., R. H. Jin, J. P. Geng, and M. Ding, "Printed omni-directional UWB monopole antenna with very compact size," IEEE Trans. Antennas Propag., Vol. 56, 896-899, Mar. 2008.
doi:10.1109/TAP.2006.874354

3. Cho, Y. J., K. H. Kim, D. H. Choi, S. S. Lee, and S. O. Park, "A miniature UWB planar monopole antenna with 5-GHz band-rejection filter and the time-domain characteristics," IEEE Trans. Antennas Propag., Vol. 54, 1453-1460, May 2006.
doi:10.1109/TAP.2007.904137

4. Ma, T. G. and S. J. Wu, "Ultrawideband band-notched folder strip monopole antenna," IEEE Trans. Antennas Propag., Vol. 55, 2473-2479, Sep. 2007.
doi:10.1109/TMTT.2004.834186

5. Fontana, R. J., "Recent system applications of short-pulse ultra wideband (UWB) technology," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 9, 2087-2104, 2004.

6. First Report and Order, Revision of part of the commissions rule regarding ultra wide band transmission system FCC02-48, Federal Communications Commission, 2002.

7. Licul, S., J. A. N. Noronha, W. A. Davis, D. G. Sweeney, C. R. Anderson, and T. M. Bielawa, "A parametric study of time-domain characteristics of possible UWB antenna architectures," Proc. Vehicular Technology Conf., Vol. 5, Oct. 6--9, 2003.
doi:10.2528/PIERC10061802

8. Yazdanifard, S., R. A. Sadeghzadeh, and M. Ojaroudi, "Ultra-wideband small square monopole antenna with variable frequency band-notch function," Progress In Electromagnetics Research C, Vol. 15, 133-144, 2010.

9. Ghaziand, A., M. N. Azarmanesh, and M. Ojaroudi, "Multi-resonance square monopole antenna for ultra-wideband applications," Progress In Electromagnetics Research C, Vol. 14, 103-113, 2010.
doi:10.2528/PIERL10012108

10. Jiang, J.-B., Z.-H. Yan, and C. Wang, "A novel compact UWB notch-filter antenna with a dual-Y-shaped slot," Progress In Electromagnetics Research Letters, Vol. 14, 165-170, 2010.
doi:10.2528/PIER07080701

11. Zakerl, R., C. Ghobadi, and J. Nourinia, "A modified microstrip-FED two-step tapered monopole antenna for UWB and WLAN applications," Progress In Electromagnetics Research, Vol. 77, 137-148, 2007.
doi:10.2528/PIERC09123007

12. Kalteh, A. A., R. Fallahi, and M. G. Roozbahani, "Design of a band-notched microstrip circular slot antenna for UWB communication," Progress In Electromagnetics Research C, Vol. 12, 113-123, 2010.
doi:10.2528/PIERL09053001

13. Tu, S., Y.-C. Jiao, Y. Song, B. Yang, and X. Wang, "A novel monopole dual band-notched antenna with tapered slot for UWB applications," Progress In Electromagnetics Research Letters, Vol. 10, 49-57, 2009.

14. Wang, L., W. Wu, X.-W. Shi, F. Wei, and Q. Huang, "Design of a novel monopole UWB antenna with a notched ground," Progress In Electromagnetics Research C, Vol. 5, 13-20, 2008.
doi:10.2528/PIER08070502

15. Lin, C.-C. and H.-R. Chuang, "A 3--12 GHz UWB planar triangular monopole antenna with ridged ground-plane," Progress In Electromagnetics Research, Vol. 83, 307-321, 2008.

16. Kraus, J. D., R. J. Marhefka, and A. S. Khan, Antenna and Wave Propagation, 4th Ed., McGraw-Hill, 2006.

17. Yang, Y.-Y., Q.-X. Chu, and Z.-A. Zheng, "Time domain characteristics of band-notched ultrawideband antenna," IEEE Trans. Antennas Propag., Vol. 57, No. 10, Oct. 2009.

18. Sheng, H., P. Orlik, A. M. Haimovich, L. J. Cimini, and J. Zhang, "On the spectral and power requirements for ultra-wideband transmission," IEEE Int. Conf. on Communications, Vol. 1, 738-742, Anchorage, AL, USA, 2003.
doi:10.1109/74.262629

19. Lamensdorf, D. and L. Susman, "Baseband-pulse-antenna techniques," IEEE Antennas Propag. Mag., Vol. 36, No. 1, 20-30, Feb. 1994.
doi:10.1002/wcm.314

20. Klemm, M. and G. Tröster, "Characterization of small planar antennas for UWB mobile terminals," Wireless Commun. Mobile Comput., Vol. 5, 525-536, Aug. 2005.

21. Computer Simulation Technology, CST studio suite 2010, www.cst.com.

22. High Frequency Structure Simulator (HFSS) version 13.0.0, Ansoft Corporation.