Vol. 121
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-11-04
Polarization Characteristics of a Partially Coherent Gaussian Schell-Model Beam in Slant Atmospheric Turbulence
By
Progress In Electromagnetics Research, Vol. 121, 453-468, 2011
Abstract
On the basis of the extended Huygens-Fresnel principle, the cross-spectral density matrix (CSDM) of partially coherent Gaussian Schell-model (GSM) beams in the slant atmospheric turbulence is derived. Given that the light emitted from a transmitter is elliptically polarized light, the degree of polarization (DoP) of the partially coherent GSM beams is represented by Stokes parameters expressed by the elements of the CSDM. The expressions of the orientation angle, polarized light intensity in the major axis are derived and the numerical results are presented. Depolarization theory is studied using a Mueller matrix and the depolarization index (DI) is obtained to describe the depolarized state of the partially coherent GSM beams propagating in the slant atmospheric turbulence. Results show that the DOP and DI of the beam tend to their initial value in the long-range propagation.
Citation
Ya Qing Li, Zhen-Sen Wu, and Li Guo Wang, "Polarization Characteristics of a Partially Coherent Gaussian Schell-Model Beam in Slant Atmospheric Turbulence," Progress In Electromagnetics Research, Vol. 121, 453-468, 2011.
doi:10.2528/PIER11092201
References

1. Zhang, Y. X., M. X. Tang, and C. K. Tao, "Partially coherent vortex beams propagation in a turbulent atmosphere," Chin. Opt. Lett., Vol. 3, 559-561, 2005.

2. Li, J. H., H. R. Zhang, and B. D. Lu, "Partially coherent vortex beams propagating through atmospheric turbulence and coherence vortex evolution," Optics & Laser Technology, Vol. 42, 428-433, 2010.

3. Ngo Nyobe, E. and E. Pemha, "Propagation of a laser beam through a plane and free turbulent heated air flow: Determination of the stochastic characteristics of the laser beam random direction and some experimental results ," Progress In Electromagnetics Research, Vol. 53, 31-53, 2005.

4. Wang, F., Y. Cai, H. T. Eyyuboglu, and Y. K. Baykal, "Average intensity and spreading of partially coherent standard and elegant Laguerre-Gaussian beams in turbulent atmosphere," Progress In Electromagnetics Research, Vol. 103, 33-56, 2010.

5. Li, J., Y. Chen, S. Xu, Y. Wang, M. Zhou, Q. Zhao, Y. Xin, and F. Chen, "Average intensity and spreading of partially coherent four-petal Gaussian beams in turbulent atmosphere ," Progress In Electromagnetics B, Vol. 24, 241-261, 2010.

6. Wei, H. Y. and Z. S. Wu, "Study on the effect of laser beam propagation on the slant path through atmospheric turbulence," Joural of Electromagnetic Waves and Applications, Vol. 22, No. 5-6, 787-802, 2008.

7. Wei, H.-Y., Z.-S.Wu, and . Ma, "Log-amplitude variance of laser beam propagation the slant path through turbulent atmosphere," Progress In Elenctromagnetics Research, Vol. 108, 277-291, 2010.

8. Wu, Z.-S., H.-Y. Wei, R.-K. Yang, and L.-X. Guo, "Study on scintillation considering inner- and outer-scales for laser beam propagation on the slant path through the atmospheric turbulence," Progress In Electromagnetics Research, Vol. 80, 277-293, 2008.

9. Wu, Z.-S. and Y.-Q. Li, "Scattering of a partially coherent Gaussian-Schell beam from a diffuse target in slant atmospheric turbulence," J. Opt. Soc. Am. A, Vol. 25, 2011.

10. Shyu, J.-J., C.-H. Chan, M.-W. Hsiung, P.-N. Yang, H.-W. Chen, and W.-C. Kuo, "Diagnosis of articular cartilage damage by polarization sensitive optical coherence tomography and the extracted optical properties ," Progress In Electromagnetics Research, Vol. 91, 365-376, 2009.

11. Zhu, B., Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jing, "Polarization insensitive metamaterial absorber with wide incident angle," Progress In Electromagnetics Research, Vol. 101, 231-239, 2010.

12. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.

13. Korotkova, O. and E. Wolf, "Changes in the state of polarization of a random electromagnetic beam on propagation," J. Opt. Commun., Vol. 246, 35-43, 2005.

14. Wolf, E., "Uni¯ed theory of coherence and polarization of random electromagnetic beams," J. Phys. Lett., Vol. A312, 263-267, 2003.

15. Ghafary, B. and M. Alavinejad, "Changes in the state of polarization of partially coherent flat-topped beam in turbulent atmosphere for different source conditions," J. Appl. Phys. B, Vol. 102, 945-952, 2011.

16. Gori, F., M. Santarsiero, S. Vicalvi, R. Borghi, and G. Guattari, "Beam coherence polarization matrix," Pure Appl. Opt., Vol. 7, 941-951, 1998.

17. Gori, F., M. Santarsiero, G. Piquero, A. Mondello, and R. Simon, "Partially polarized Gaussian Schell-model beams," J. Opt. A: Pure Appl. Opt., Vol. 3, 1-9, 2001.

18. Cai, Y., D. Ge, and Q. Lin, "Fractional fourier transform for partially coherent and partially polarized Gaussian Schell-model beams," J. Opt. A: Pure Appl. Opt., Vol. 5, 453-459, 2003.

19. Korotkova, O., M. Salem, and E. Wolf, "The far zone behavior of the degree of polarization of electromagnetic beams propagating through atmospheric turbulence," J. Opt. Commun., Vol. 233, 225-230, 2004.

20. Salem, M., O. Korotkova, A. Dogariu, and E. Wolf, "Polarization changes in partially coherent electromagnetic beams propagating through turbulence atmosphere," Waves in Random Media, Vol. 14, 513-523, 2004.

21. Sihvola, A., "Metamaterials and depolarization factors," Progress In Electromagnetics Research, Vol. 51, 65-82, 2005.

22. Lin, G.-R., F.-S. Meng, and Y.-H. Lin, "Second-order scattering induced reflection divergence and nonlinear depolarization on randomly corrugated semiconductor nano-pillars," Progress In Electromagnetics Research, Vol. 117, 67-81, 2011.

23. Wang, X. and L.-W. Li, "Numerical characterization of bistatic scattering from PEC cylinder partially embedded in a dielectric rough surface interface: Horizontal polarization," Progress In Electromagnetics Research, Vol. 91, 35-51, 2009.

24. Hohn, D. H., "Depolarization of a Laser Beam at 6328 A due to Atmospheric Transmission," J. Appl. Opt., Vol. 8, 367-369, 1969.

25. Gil, J. J. and E. Bernabeu, "A depolarization criterion in Mueller matrices," Opt. Acta, Vol. 32, 259-261, 1985.

26. Gil, J. J. and E. Bernabeu, "Depolarization and polarization indices of an optical system," Opt. Acta, Vol. 33, 185-189, 1986.

27. Chipman, R. A., "Depolarization index and the average degree of polarization," J. Appl. Opt., Vol. 44, 2490-2495, 2005.

28. Zhu, S. and Y. Cai, "Degree of polarization of a twisted electromagnetic Gaussian Schell-model beam in a Gaussian cavity filled with gain media," Progress In Electromagnetics Research B, Vol. 21, 171-187, 2010.

29. Clifford, S. F. and H. T. Yura, "Equivalence of two theories of strong optical scintillation," J. Opt. Soc. Am., Vol. 64, 1641-1644, 1974.

30. Holmes, J. F., H. L. Myung, and J. R. Kerr, "Effect of the log-amplitude covariance function on the statistics of speckle propagation through the turbulent atmosphere," J. Opt. Soc. Am., Vol. 70, 355-360, 1979.

31. ITU-R. Document 3J/31-E, , On propagation data and prediction methods required for the design of space-to-earth and earth-to-space optical communication systems, Vol. 206, 277-293 Radio Communication Study Group Meeting, Budapest, 2001.

32. Zhao, X. H., Y. Yao, Y. X. Sun, and C. Liu, "Condition for Gaussian Schell-model beam to maintain the state of polarization on the propagation in free space ," J. Opt. Soc. Am., Vol. 17, 88-94, 2009.