1. Boyd, J. P., Chebyshev and Fourier Spectral Methods, Dover publications, 2000.
2. Fornberg, B., "A Practical Guide to Pseudospectral Methods," Cambridge University Press, 1996.
3. Liu, Q. H., "The PSTD algorithm: A time-domain method requiring only two cells per wavelength," Microwave and Optical Technology Letters, Vol. 15, 158-165, 1997.
doi:10.1002/(SICI)1098-2760(19970620)15:3<158::AID-MOP11>3.0.CO;2-3
4. Giordano, N. J. and H. Nakanishi, Computational Physics, Prentice Hall Publishing, 1997.
5. Gonzalez, R. C. and R. E. Woods, Digital Image Processing, Addison-Wesley Publishing, 1992.
6. Gottlieb, D. and C. W. Shu, "On the Gibbs phenomenon and its resolution," SIAM Review, Vol. 39, 644-668, 1997.
doi:10.1137/S0036144596301390
7. Gottlieb, D., C. W. Shu, S. Alex, and H. Vandeven, "On the Gibbs phenomenon I: Recovering exponential accuracy from the fourier partial sum of a nonperiodic analytic function," Journal of Computational and Applied Mathematics, Vol. 43, 81-98, 1992.
doi:10.1016/0377-0427(92)90260-5
8. Driscoll, T. A. and B. Fornberg, "A pade-based algorithm for overcoming Gibbs phenomenon," Numerical Algorithms, Vol. 26, 77-92, 2001.
doi:10.1023/A:1016648530648
9. Gelb, A. and J. Tanner, "Robust reprojection methods for the resolution of the Gibbs phenomenon," Applied and Computational Harmonic Analysis, Vol. 20, 3-25, 2006.
doi:10.1016/j.acha.2004.12.007
10. Boyd, J. P., "Trouble with Gegenbauer reconstruction for defeating Gibbs' phenomenon: Runge phenomenon in the diagonal limit of Gegenbauer polynomial approximations," Journal of Computational Physics, Vol. 204, 253-264, 2005.
doi:10.1016/j.jcp.2004.10.008
11. Min, M., T. Lee, P. F. Fischer, and S. K. Gray, "Fourier spectral simulations and Gegenbauer reconstructions for electromagnetic waves in the presence of a metal nanoparticle ," Journal of Computational Physics, Vol. 213, 730-747, 2006.
doi:10.1016/j.jcp.2005.06.025
12. Shizgal, B. D. and J. Jung, "Towards the resolution of the Gibbs phenomena," Journal of Computational and Applied Mathematics, Vol. 161, 41-65, 2003.
doi:10.1016/S0377-0427(03)00500-4
13. Jung, J. and B. D. Shizgal, "Generalization of the inverse polynomial reconstruction method in the resolution of the Gibbs phenomenon," Journal of Computational and Applied Mathematics, Vol. 172, 131-151, 2004.
doi:10.1016/j.cam.2004.02.003
14. Jung, J. and B. D. Shizgal, "On the numerical convergence with the inverse polynomial reconstruction method for the resolution of the Gibbs phenomenon ," Journal of Computational Physics, Vol. 224, 477-488, 2007.
doi:10.1016/j.jcp.2007.01.018
15. Jung, J. and B. D. Shizgal, "Inverse polynomial reconstruction of two-dimensional fourier images," Journal of Science Computing, Vol. 25, 367-399, 2005.
doi:10.1007/s10915-004-4795-3
16. Hrycak, T. and K. Grochenig, "Pseudospectral fourier reconstruction with the modified inverse polynomial reconstruction method," Journal of Computational Physics, Vol. 229, 933-946, 2010.
doi:10.1016/j.jcp.2009.10.026
17. Jung, J., "A hybrid method for the resolution of the Gibbs phenomenon," Lecture Notes in Computational Science and Engineering, Vol. 76, 219-227, 2011.
doi:10.1007/978-3-642-15337-2_19
18. Paige, C. C. and M. A. Saunders, "LSQR: An algorithm for sparse linear equations and sparse least squares," ACM Transactions on Mathematical Software, Vol. 8, 43-71, 1982.
doi:10.1145/355984.355989
19. Carvalho, S. and L. S. Mendes, "Scattering of EM waves by inhomogeneous dielectrics with the use of the method of moments and 3-D solenoidal basis functions ," Microwave and Optical Technology Letters, Vol. 23, 42-46, 1999.
doi:10.1002/(SICI)1098-2760(19991005)23:1<42::AID-MOP12>3.0.CO;2-N
20. Li, M.-K. and W. C. Chew, "Applying divergence-free condition in solving the volume integral equation," Progress In Electromagnetics Research, Vol. 57, 311-333, 2006.
doi:10.2528/PIER05061303
21. Fan, Z., R.-S. Chen, H. Chen, and D.-Z. Ding, "Weak form nonuniform fast Fourier transform method for solving volume integral equations," Progress In Electromagnetics Research, Vol. 89, 275-289, 2009.
doi:10.2528/PIER08121308
22. Hu, L., L.-W. Li, and T. S. Yeo, "Analysis of scattering by large inhomogeneous bi-anisotropic objects using AIM," Progress In Electromagnetics Research, Vol. 99, 21-36, 2009.
doi:10.2528/PIER09101204
23. Taboada, J. M., M. G. Araujo, J. M. Bertolo, L. Landesa, F. Obelleiro, and J. L. Rodriguez, "MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics," Progress In Electromagnetics Research, Vol. 105, 15-30, 2010.
doi:10.2528/PIER10041603
24. Ergul, O., T. Malas, and L. Gurel, "Solutions of largescale electromagnetics problems using an iterative inner-outer scheme with ordinary and approximate multilevel fast multipole algorithms," Progress In Electromagnetics Research, Vol. 106, 203-223, 2010.
doi:10.2528/PIER10061711
25. Huang, Y., Y. Liu, Q. H. Liu, and J. Zhang, "Improved 3-D GPR detection by NUFFT combined with MPD method," Progress In Electromagnetics Research, Vol. 103, 185-199, 2010.
doi:10.2528/PIER10021005
26. Zhu, X., Z. Zhao, W. Yang, Y. Zhang, Z.-P. Nie, and Q. H. Liu, "Iterative time-reversal mirror method for imaging the buried object beneath rough ground surface," Progress In Electromagnetics Research, Vol. 117, 19-33, 2011.
27. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, Government Printing Office Publishing, 1972.
28. Zhu, C. H., Q. H. Liu, Y. Shen, and L. J. Liu, "A high accuracy conformal method for evaluating the discontinuous fourier transform," Progress In Electromagnetics Research, Vol. 109, 425-440, 2010.
doi:10.2528/PIER10082007
29. Rabiner, L. R., R. W. Schafer, and C. M. Rader, "The chirp Z-transform algorithm and its application," IEEE Transaction on Audio Electroacoust, Vol. 17, 86-92, 1969.
doi:10.1109/TAU.1969.1162034
30. Franceschetti, G., R. Lanari, and E. S. Marzouk, "A new two-dimensional squint mode SAR processor," IEEE Transactions on Aerospace and Electronic Systems, Vol. 32, 854-863, 1996.
doi:10.1109/7.489529