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Abstract—A fast Inverse Polynomial Reconstruction Method (IPRM)
is proposed to efficiently eliminate the Gibbs phenomenon in Fourier
reconstruction of discontinuous functions. The framework of the
fast IPRM is modified by reconstructing the function in discretized
elements, then the Conformal Fourier Transform (CFT) and the Chirp
Z-Transform (CZT) algorithms are applied to accelerate the evaluation
of reconstruction coefficients. The memory cost of the fast IPRM is
also significantly reduced, owing to the transformation matrix being
discretized in the modified framework. The computation complexity
and memory cost of the fast IPRM are O(MN log 2L) and O(MN),
respectively, where L is the number of the discretized elements, M is
the degree of polynomials for the reconstruction of each element, and
N is the number of the Fourier series. Numerical results demonstrate
that the fast IPRM method not only inherits the robustness of the
Generalized IPRM (G-IPRM) method, but also significantly reduces
the computation time and the memory cost. Therefore, the fast
IPRM method is useful for the pseudospectral time domain methods
and for the volume integral equation of the discontinuous material
distributions.
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1. INTRODUCTION

Traditional representation of a smooth and periodic function in the
Fourier basis has been widely applied in the spectral method [1],
the pseudospectral method [2, 3], and other computational physics [4]
and signal processing research domains [5]. But Gibbs phenomenon
occurs when the Fourier representation method is applied to a
non-periodic or discontinuous function [6]. Neither accuracy nor
efficiency can be achieved anymore because the finite Fourier
representation cannot converge at the discontinuities or the boundaries
of the function. Consequently, Gibbs phenomenon greatly hinders
Fourier-representation based applications. A class of re-expansion
methods have been developed to eliminate the Gibbs phenomenon
in reconstructing discontinuous functions, with the locations of the
discontinuities known a priori. They re-express the function in a non-
periodic basis set, such as the Gegenbauer polynomial basis set [6, 7],
the Pade Fourier rational basis function [8] and the Freund polynomial
basis set [9], to obtain the exponential convergence over the entire
interval of the function, including the discontinuities or boundaries.
However, the performance of these methods depends on the specific
basis set and imposes several stringent requirements on the basis
parameters [10, 11].

The Inverse Polynomial Reconstruction Method (IPRM) presents
a basis-independent reconstruction frame to overcome the Gibbs
phenomenon [12, 15, 17]. The IPRM reconstructs a function as a finite
sum of polynomials, based on the equation between the Fourier series
of the reconstructed function and that of the original function. The
IPRM provides more flexibility and faster convergence than other re-
expansion methods, but Jung and Shizgal found that the increment in
the polynomial degree can dramatically deteriorate the conditioning
of the transformation matrix and the reconstruction may fail to
converge [13, 14].

The Generalized IPRM method (G-IPRM) has been proposed
in [16] to avoid the ill-conditioning of the transformation matrix.
The condition number of the transformation matrix in the G-IPRM
is kept close to one by increasing the number of entries in the
transformation matrix, specifically by increasing the number of Fourier
series to be the square of the degree of polynomials. Thus, the well-
conditioned transformation matrix makes the G-IPRM more robust,
and significantly generalizes the application domains of the traditional
IPRM, but with increased memory cost and computation complexity.
The time complexity and the memory cost of the G-IPRM are both
O(M3

G), where MG is the degree of polynomials, if the iterative Least
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Square QR (LSQR) method [18] is used to invert for the reconstruction
coefficients. Such heavy computation complexity and memory cost are
undesirable in many applications, e.g. the reconstruction of large-
scale induced electric or current density in discontinuous media in
computational electromagnetics [19–24] or in radar signal research
domain [25, 26]. Therefore, it is necessary to reduce the computation
time and the memory complexity in the G-IPRM.

In this paper, a fast IPRM method is presented to reduce the
computation complexity and the memory cost of the G-IPRM. The
framework of the fast IPRM is modified by reconstructing the function
in the discretized elements, so that the Conformal Fourier Transform
(CFT) [28] and the Chirp Z-Transform (CZT) [29, 30] algorithms can
be combined with the LSQR to reduce the computation complexity.
The memory cost of the fast IPRM is reduced due to the transformation
matrix being discretized, while the robustness of the reconstruction
is preserved through configuring the relationships among the number
of the discretized elements L, the degree of polynomials M and the
number of Fourier series N . The computation complexity and memory
cost of the fast IPRM are O(MN log 2L) and O(MN), respectively.
Numerical results demonstrate the robustness and the efficiency of the
fast IPRM.

This paper is organized as follows: The fast IPRM method is
presented in Section 2. Numerical results, including reconstruction of a
meromorphic function and the induced current density in discontinuous
material distributions, are shown in Section 3. The conclusions are
drawn in Section 4.

2. THE FAST IPRM METHOD.

Given the locations of discontinuities, the essence of the IPRM is
solving an inverse problem from the already-known finite Fourier
series of a discontinuous function and that of the polynomial basis
functions. The objective of the proposed fast IPRM is to solve this
inverse problem more efficiently through a discretization technique and
two fast algorithms. There are three major steps in the fast IPRM:
(1) modify the IPRM reconstruction framework by reconstructing the
function in the discretized elements; (2) accelerate the reconstruction
by combining two fast algorithms-CFT and CZT with the classic LSQR
in the modified IPRM framework; (3) configure the discretization and
reconstruction parameters to guarantee the robustness and efficiency
enhancement of the fast IPRM.

In this section, first the fast IPRM will be presented for
reconstructing a single-region discontinuous function;, and then it will
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be extended to a multiple-region discontinuous function.

2.1. The Fast IPRM Method for a Single-region
Discontinuous Function

As a discontinuous function can be divided into multiple regions of
piecewise continuous functions, we first consider the fast IPRM method
for only one region of such a function.

2.1.1. Modification of the IPRM Framework by Discretization

Assume that f(x) is continuous in the region Ω = [a, b], b > a and zero
outside. F = [F−N/2, . . . , FN/2−1] is the vector of the first N Fourier
coefficients of f(x) and the superscript T denotes matrix transpose.

The region Ω is equally segmented into L uniformly-spaced

elements Ω =
L⋃

l=1

Ωl, where Ωl = [al, bl], and Ωi
⋂

Ωj = ∅ if i 6= j.

The boundaries of the lth element are

al = a + (l − 1) q, bl = a + lq (1)

where q is the length of each element, q = bl − al = b−a
L .

The function f(x) is locally reconstructed in these uniformly-
discretized elements

f̂l (x) =
M−1∑

m=0

gl
m · Cm

(
ξl (x)

)
, f̂ (x) =

L⊕
l=1

f̂l (x) (2)

where f̂l (x) is the locally-reconstructed function in the lth element Ωl.
f̂ (x) is the reconstructed function in the region Ω, and ⊕ denotes that
f̂ (x) is a collection of f̂l (x). ξl(x) = 2x−(bl+al)

q is the linear mapping
from Ωl = [al, bl] to [−1, 1]. M is the degree of the polynomial, Cm(·) is
the mth order polynomial, and gl =

[
gl
0 gl

1 . . . gl
M−1

]
is the vector

of coefficients for reconstructing fl(x).
The reconstruction coefficients can be obtained by equating the

Fourier series of the reconstructed function f̂ (x) and that of the
original function f(x)

W · g = F (3)

where g is the vector of reconstruction coefficients constituted with
that of the local reconstructions g =

[
g1 g2 . . .gL

]T , and W is
the transformation matrix

W =
[

w1 . . . wl . . . wL
]

(4)
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where wl is the sub-matrix of Fourier series of polynomials for the local
reconstruction f̂ (x).

The entry of the sub-matrix wl at the n + N/2 + 1th row and the
m + 1th column is

wl
n,m =

∫ bl

al

Cm

(
ξl (x)

)
· exp (−i2πf0nx) dx

= exp [−i2πn (l − 1)/L] · w1
n,m (5)

where w1
n,m = q

2 ·exp [−iπn (a1 + b1) f0]·
∫ 1
−1 Cm (x) · exp (−iπnx/L) dx,

and f0 = 1/(b− a) is the frequency resolution. n = −N/2, . . . , N/2−1,
m = 0, 1, . . . ,M − 1, l = 1, . . . , L, and i is the imaginary unit.

The modified IPRM framework for reconstructing single-region
discontinuous function is achieved by Equations (1)–(5). The
reconstruction framework of the G-IPRM is a special case with L = 1.
From (4) and (5), it can be seen that, due to the uniform discretization
and the local reconstruction, the transformation matrix W is uniformly
discretized into L sub-matrices, which are differentiated only by the
exponential scaling term independent of the polynomial order m.
Given the Fourier series F, the aim of the fast IPRM is to efficiently
solve the reconstruction coefficients g in (3) by taking advantage of the
uniformly-discretized transformation matrix W in the modified IPRM
framework.

2.1.2. Acceleration of the Reconstruction by the CFT and the CZT

When the iterative LSQR is utilized to solve the Equation (3), the
computation complexity of the IPRM is determined by the number
of the multiplication operations to calculate the following two matrix-
vector products

y = W · u (6)

z = W† · v (7)

where the superscript † denotes the complex conjugate transpose,
u and v are already known vectors, u = [u1 . . . ul . . . uL]T ,
ul = [ul

0 ul
1 . . . ul

M−1], v = [v−N/2 . . . vN/2−1]; y and z are
respectively N × 1 and LM × 1 dimension unknown vectors.

The computation complexities of (6) and (7) by direct multipli-
cation are both O (LMN), which is very expensive. Fortunately, in
the modified framework, taking advantage of the uniformly discretized
transformation matrix W, the computation complexity can be reduced
by employing fast algorithms to evaluate products in (6) and (7).
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Substituting (5) into (6), the (n + N/2 + 1)th entry of the vector
y is

yn =
L∑

l=1

M−1∑

m=0

ul
m · wl

n,m =
L∑

l=1

∫ bl

al

γl (x) · exp (−i2πnf0x) dx

=
∫ b

a
γ (x) · exp (−i2πnf0x) dx (8)

where n = −N/2, . . . , N/2− 1, γl (x) is the (M − 1) order polynomial

function in the lth element given by γl (x) =
M−1∑
m=0

ul
m · Cm

(
ξl (x)

)
,

x ∈ [al, bl].
The product vector y in (8) is the summation of Fourier series

of the L piecewise continuous functions γ1(x),γ2(x),. . . ,γL(x). These
functions are in the same polynomial degree M and have the same
interval space q, thus they can be considered as the uniformly-spaced

elements of a discontinuous polynomial function γ(x), γ (x) =
L⊕

l=1
γl (x)

in [a, b] and zero outside.
Instead of calculating the Fourier series of the L piecewise

continuous functions γ1(x),γ2(x),. . . ,γL(x) independently, the product
vector y can be efficiently and accurately achieved by calculating
the Fourier series of γ(x) using the CFT algorithm [28], with the
computation complexity of O (MN log2 2L). The CFT algorithm, in
which uniform discretization and high-order polynomial interpolation
techniques are utilized, is a fast and accurate method to compute the
Fourier series of a discontinuous function. Since the discretization is
conformal to the discontinuities, the CFT algorithm can accelerate the
evaluation of y. Details of the CFT algorithm can be found in [28].

The other product vector to be calculated z in (7) is composed
of L sub-vectors z =

[
z1 . . . zl . . . zL

]T and zl =[
zl
0 zl

1 . . . zl
M−1

]
, l = 1, 2, . . . , L. Substituting (5) into (7), the

(m + 1)th entry of zl is

zl
m =

N/2−1∑

n=−N/2

vn ·
(
wl

n,m

)∗
=

N/2−1∑

n=−N/2

dm (n) · exp [i2πn (l − 1)/L] (9)

where dm (n) = vn ·
(
w1

n,m

)∗ and the superscript ∗ denotes the complex
conjugate.

Due to the transformation matrix W being uniformly discretized,
for each constant integer m, z1

m, z2
m, . . ., zL

m are the first L discrete
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Fourier series of the N−point discrete function dm(·), with the
frequency resolution f0q = 1/L and L ¿ N . Therefore, the product
vector z can be efficiently evaluated by performing the Chirp Z-
Transform (CZT) [29, 30] on the discrete function dm(n), for each m,
m = 0, 1, . . . , M − 1, hence the computation complexity to evaluate z
is O (MN log2 2L).

By combining with the CZT and the CFT algorithms, the
computation time in one iteration of the LSQR for evaluating the
coefficient vector g is reduced from O (LMN) to O (MN log2 2L).
Furthermore, it is not necessary to store the entire transformation
matrix W, and only the sub-matrix w1 and several vectors are
required, leading to a memory requirement of O (MN) in the fast
IPRM algorithm.

2.1.3. Discretization and Reconstruction Parameters

To guarantee the robustness as well as the efficiency enhancement
of the fast IPRM, the relationship among the discretization and
reconstruction parameters L, M and N are discussed.

The fast IPRM can possess the same robustness as the G-IPRM
by keeping the condition number of the transformation matrix close to
one. From (5), it can be seen that, the different sub-matrices of the
transformation matrix W are independent of each other. Therefore,
the condition number of transformation matrix W is equivalent to that
of the matrix A

A =

[
H0 (−πN/2L) . . . HM−1 (−πN/2L)

. . . . . . . . .
H0 (π (N/2− 1)/L) . . . HM−1 (π (N/2− 1)/L)

]
(10)

where Hm (πn/L) =
∫ 1
−1 Cm (x) · exp (−iπnx/L) dx. When Cm (·) is

the normalized Legendre polynomial basis set, the entry in matrix
A is Hm (πn/L) = (−i)m (m + 1/2)1/2 jm (πn/L), where jm(·) is the
mth order spherical Bessel function of the first kind [27]. According
to Theorem 4.1 and Theorem 4.2 in [16], the condition number of the
matrix A is decided by N/L. If N/L is the square of the degree M ,
i.e., if

N = LM2 (11)

then the condition number of the transformation matrix W is kept
close to one. This not only preserves the robustness of the fast IPRM
as that of the G-IPRM, but also ensures that the numbers of iterations
of the two methods to evaluate g are close to each other once the
termination criterion of the LSQR ε is determined [16]. Thus, the
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reduction of the computation complexity in the fast IPRM is decided
by that in one iteration of the LSQR.

To guarantee the efficiency improvement of the fast IPRM over the
G-IPRM, the relationship among the reconstruction parameters of the
fast IPRM L, M and that of the G-IPRM MG, is now considered. As
known from the convergence theory for polynomial expansion [1] and
Theorem 5.1 in [16], the IPRM converges faster in a smaller interval.
Because of the discretization and local reconstruction of the fast IPRM,
given a certain accuracy requirement, M < MG. Generally, a larger
element number L accompanies with a lower polynomial degree M . For
a given reconstruction accuracy requirement, L and M can be selected
to satisfy

L2/3M < MG (12)

From (12), the conditions LM3 < L2M3 < M3
G and

LM3 log2 2L < L2M3 < M3
G are satisfied. Therefore, with the

same robustness and the same reconstruction accuracy requirement,
the fast IPRM, whose computation complexity and memory cost are
O

(
LM3 log2 L

)
and O

(
LM3

)
, respectively, can achieve much higher

computation and memory cost efficiency than the G-IPRM, whose one-
iteration computation complexity and memory cost are both O

(
M3

G

)
.

2.2. The Fast IPRM method for a Multiple-region
Discontinuous Function

In this subsection, we will extend the fast IPRM to reconstruct a
multiple-region discontinuous function from its Fourier coefficients.

Assume that f(x) is a multiple-region discontinuous function
in the interval Ω = [d0, dS ], with S > 1 and zero outside. The
discontinuities of f(x) locate at [d0, d1, . . . , dS ], and d0 < d1 < . . . <

dS . The first N Fourier series of f(x) is F =
[
F−N/2 . . . FN/2−1

]T .
To obtain the modified IPRM framework for reconstructing

f(x), firstly the interval of the function Ω is divided into S
regions within which the function is continuous. Then by the same
procedures as described in Subsection 2.1, each region is segmented
into L1, L2,. . . ,LS uniformly elements, where the function is locally
reconstructed as the polynomials with degree of M1, M2,. . . , MS ,
respectively.

The transformation matrix W, with the size of N ×
S∑

s=1
LsMs, is

composed of
S∑

s=1
Ls sub-matrices of Fourier series of polynomial basis
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for local reconstruction in each element

W =
[

w1
1 . . . wl

s . . . wLS
S

]
(13)

where wl
s is the submatrix of Fourier series, with the size of N×Ms, for

local reconstruction of the lth element in the sth region, s = 1, . . . , S,
l = 1, . . . , L. The entry of the sub-matrix wl

s at the n+N/2+1th row
and the m + 1th column is

wl
s,n,m = exp [−i2πn (l − 1)f0qs] · w1

s,n,m (14)

where w1
s,n,m=qs

2 ·exp[−iπn (2ds−1+qs)f0]·
∫ 1
−1Cm(x)·exp(−iπnf0qsx)dx.

qs = (ds − ds−1)/Ls is element length in the sth region, and f0 =
1/(dS − d0) is the frequency resolution.

The reconstruction of the multiple-region discontinuous function is
also an inverse problem to evaluate the coefficients g based on Equation
(3). As known from (13) and (14), the transformation matrix W is
uniformly discretized in each region. Therefore, similar to the single-
region case, the CFT and the CZT can be combined with the LSQR
to accelerate the evaluation of the reconstruction coefficients, and the

computation complexity is O

(
N

S∑
s=1

Ms log2 2Ls

)
. Meanwhile, the

memory cost is O

(
N

S∑
s=1

Ms

)
since only sub-matrices w1

1, w1
2, . . . , w1

S

and several vectors are required to be stored.
For the reconstruction of the multiple-region discontinuous

function, the robustness and the efficiency of the fast IPRM are further
guaranteed by selecting the reconstruction parameters to meet the
following conditions

N =
S

max
s=1

{
M2

s

/
qs

}
(dS − d0) (15)

N
S∑

s=1

LsMs < NG

S∑

s=1

MG,s (16)

where MG,s is the polynomial degree for reconstructing the sth region
by the G-IPRM, with the same reconstruction accuracy as the fast
IPRM, and NG is the number of Fourier series in the G-IPRM,
NG =

S
max
s=1

{
M2

G,s

/
(ds − ds−1)

}
· (dS − d0).

3. NUMERICAL RESULTS

In this section, three examples are simulated to demonstrate the
performance of the fast IPRM. Example in Subsection 3.1 takes the
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same meromorphic function as in [16] to compare the fast IPRM
and the G-IPRM proposed in [16]. Subsection 3.2 compares the
reconstruction results of a single-region induced current density by
the fast IPRM and the G-IPRM, respectively. Subsection 3.3 shows
the reconstruction results by the fast IPRM and the G-IPRM for
an induced current density whose support domain includes multiple
piecewise continuous regions.

To compare the efficiency of the fast IPRM and the G-IPRM,
in these three examples, the memory costs of the two methods
are estimated by the number of the entries in the transformation
matrix that need to be stored, and their computation complexities
are measured by the number of the complex multiplication operations
to obtain the reconstruction coefficients g.

3.1. Reconstruction of a Single-region Meromorphic
Function

The analytic expression of the function is

f (x) =
{

1/(x− 0.3i), x ∈ [−1, 1]
0, otherwise .

This function, as shown in Fig. 1(a), is a single-region discontinuous
function with discontinuities located at x = ±1.

In the fast IPRM, for different degree of polynomials M , to meet
condition (12), the number of the discretized elements is configured to
be L = 2. For the fixed L, according to (11), the number of the Fourier
series is N = 2M2.

As shown in Fig. 1(b), similar to the G-IPRM, the condition
number of the transformation matrix W in the fast IPRM is kept
close to one with the increasing of polynomial degree M . This
not only ensures the robustness of the fast IPRM, but also makes
the number of iterations in the fast IPRM almost the same as
that in the G-IPRM when the termination criterion of the LSQR
algorithm ε is decided, as shown in Fig. 1(c). Hence the difference
of computation complexity between these two methods is determined
by the computation complexity in one iteration.

The accuracy of the reconstruction is measured by the relative
maximum error (RME)

∥∥∥f (x)− f̂ (x)
∥∥∥
∞

/
‖f (x)‖∞. From Fig. 1(d),

it can be seen that, the fast IPRM achieve the same reconstruction
accuracy with a lower polynomial degree than the G-IPRM.

The memory cost and the computation complexity of the two
methods are shown in Fig. 1(e) and Fig. 1(f), respectively. It can
be seen that, although the computation complexity of the fast IPRM
is not obviously improved, the memory cost of the fast IPRM is greatly
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Figure 1. Reconstruction results of a Meromorphic function
f (x) = 1/(x− 0.3i). (a) Function f(x). (b) Condition number of
transformation matrix in the fast IPRM. (c) Total iteration number
required in the G-IPRM and in the fast IPRM to meet the termination
criterion ε = 10−13 in the LSQR. (d) Relative maximum error
of reconstruction by the G-IPRM and by the fast IPRM. (e) The
memory cost of the fast IPRM and the G-IPRM. (f) The computation
complexity of the fast IPRM and the G-IPRM.

reduced, e.g., for a relative maximum error as 10−5, the memory cost
in the fast IPRM is about 1/12 of that in the G-IPRM.

Therefore, for this single-region meromorphic function, the fast
IPRM not only inherits the robustness of the G-IPRM but also
possesses higher memory efficiency than the G-IPRM.

3.2. Reconstruction of a Single-region Induced Current
Density

In this subsection, an induced electric current density due to a plane
wave at normal incidence to a three-layer medium with frequency
fc = 5GHz in a vacuum background is reconstructed. The layer
interfaces are located at 2.2m and 4.4 m, respectively, and the relative
magnetic permeability for all three layers is 1. The relative permittivity
is εr = 1, 3 and 1 respectively. The conductivity for the center
layer is σ = 0.003 S/m. The wave number in the central layer is
63.5085. As shown in Fig. 2(a), this wave distribution is a single-
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region discontinuous function with discontinuities located at x = 2.2 m
and x = 4.4m, respectively.

To guarantee the efficiency improvement of the fast IPRM, L and
M are selected to satisfy (12). As shown in Fig. 2(h) multiple values
of L can meet formula (12) and reduce the computation complexity
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Figure 2. Reconstruction results of an induced electric current
density in a three-layer medium. (a) Spatial distribution of an
induced electric current density in a three-layer medium. (b) Condition
number of transformation matrix in the fast IPRM. (c) Total iteration
number required in the G-IPRM and in the fast IPRM to meet the
termination criterion ε = 10−6 in the LSQR. (d) Relative maximum
error of reconstruction by the G-IPRM and by the fast IPRM. (e) The
memory cost of the fast IPRM and the G-IPRM. (f) The computation
complexity of the fast IPRM and the G-IPRM. (g) The relative
maximum error of the fast IPRM. (h) The ratio of computation
complexity between the fast IPRM and the G-IPRM.
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compared to the G-IPRM. In the simulation, the value of L is taken
as the half of the wave numbers in the center layer, i.e., L = 32, and
for the fixed L, the number of the Fourier series varies with the degree
of polynomial, N = 32M2.

Figure 2(b) shows that, just as in the G-IPRM, the condition
number of the transformation matrix W in the fast IPRM is kept close
to one with the increasing of polynomial degree. Fig. 2(c) demonstrates
that the numbers of iterations in the fast IPRM and the G-IPRM
are close to each other, with a fixed termination criterion ε in the
LSQR. Thus the difference of computation complexity between these
two methods is determined by that in one iteration of the LSQR.

As shown in Fig. 2(d), the G-IPRM method converges much slower
and requires higher degree polynomials, whereas the fast IPRM with
elements number L = 32, needs a much lower polynomial degree to
obtain the same reconstruction accuracy. Fig. 2(g) shows that the
RME of the fast IPRM is reduced with the increase of L for a fixed
value of M . Meanwhile, a larger element number L accompanies a
lower polynomial degree M for a given accuracy requirement.

The memory cost and the computation complexity are signifi-
cantly reduced in the fast IPRM compared with the G-IPRM, as shown
in Figs. 2(e) and (f). With the relative maximum error 10−5, the com-
putation complexity and the memory cost in fast IPRM are only about
1/4 and 1/90 of that in the G-IPRM, respectively.

3.3. Reconstruction of a Multiple-region Induced Current
Density

A multiple-region induced electric current density due to a plane wave
at normal incidence to a five-layer medium with frequency fc = 5 GHz
in a vacuum background, is reconstructed in this subsection. The
layer interfaces are located at 0.8m, 1 m, 5.4 m and 5.8 m, respectively.
The relative permittivity is εr = 1, 5, 3, 4 and 1, respectively. The
conductivity for the center three layers is σ = 0.005, 0.003 and
0.004 S/m, respectively, and the wave numbers in the three center
layers are 7.4536, 127.02, 13.3333, respectively. As shown in Fig. 3(a),
the wave distribution is a three-region discontinuous function with
discontinuities located at 0.8 m, 1 m, 5.4 m and 5.8m, respectively.

In the fast IPRM, to meet the condition in (16), we configure the
element number as the half of the wave numbers in the central three
layers, L1 = 4, L2 = 64 and L3 = 7. The degrees of polynomials in the
three regions are the same M1 = M2 = M3 = M , and according to (15),

the number of the Fourier series is N =
S

max
s=1

{1/qs} (dS − d0) M2 =

100M2.
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As in the previous two numerical examples, the robustness and
the efficiency of the fast IPRM are illustrated in Fig. 3(b)–Fig. 3(f).
Fig. 3(b) shows that, in the fast IPRM, the condition number of
transformation matrix W is kept close to one with the increasing
of polynomial degree, while that in the G-IPRM is slightly larger.
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Figure 3. Reconstruction results of an induced electric current density
in a five-layer medium. (a) Spatial distribution of an induced electric
current density in a five-layer medium. (b) Condition number of
transformation matrix in the fast IPRM. (c) Total iteration number
required in the G-IPRM and in the fast IPRM to meet the termination
criterion ε = 10−13 in the LSQR. (d) Relative maximum error
of reconstruction by the G-IPRM and by the fast IPRM. (e) The
memory cost of the fast IPRM and the G-IPRM. (f) The computation
complexity of the fast IPRM and the G-IPRM.
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Fig. 3(c) demonstrates that the numbers of iterations in the fast IPRM
and the G-IPRM are close to each other. As shown in Fig. 3(d), the
polynomial degree in the fast IPRM is much lower than that in the G-
IPRM. From Fig. 3(e) and Fig. 3(f), it can be found that, the memory
cost and the computation complexity are significantly reduced in the
fast IPRM compared with the G-IPRM, e.g. for a maximum relative
error as 10−5, the computation complexity and the memory cost in fast
IPRM are about 1/5 and 1/94 of that in the G-IPRM, respectively.

3.4. Discussion

The above numerical examples demonstrate that the fast IPRM
method works efficiently for eliminating the Gibbs phenomenon of
both single-region and multiple-region discontinuous functions. It is
also seen that, provided that the number of the discretized elements L
satisfy (12) or (16), the efficiency improvement of the fast IPRM over
the G-IPRM is more distinct with the increment of L. For the multiple-
region case, the improvement of the efficiency in the fast IPRM over
the G-IPRM is decided by the region, which has the largest number of
the discretized elements.

4. CONCLUSION

In this paper, we propose a fast IPRM method to efficiently overcome
Gibbs phenomenon in the reconstruction of discontinuous or non-
periodic functions. The Conformal Fourier Transform (CFT) and the
Chirp Z-Transform (CZT) algorithms are combined in the modified
IPRM framework to decrease both computation time and memory
complexity. For a discontinuous function with S piecewise-continuous
regions, the memory cost and the computation complexity of the

fast IPRM method are O

(
N

S∑
s=1

Ms

)
and O

(
N

S∑
s=1

Ms log2 2Ls

)
,

respectively. Numerical results show that the fast IPRM method works
well for both single-region functions and multiple-region functions.
Therefore, the fast IPRM method can be useful in pseudospectral
time-domain methods and in volume integral equation solvers for
discontinuous material distributions or other areas where Gibbs
phenomenon needs to be efficiently eliminated.
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