Vol. 35
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-11-02
Design Optimization of Two Synchronous Reluctance Machine Structures with Maximized Torque and Power Factor
By
Progress In Electromagnetics Research B, Vol. 35, 369-387, 2011
Abstract
The subject of this article is to optimize the design of synchronous reluctance machines with massive rotor and multi-flux barrier rotor. The optimization procedure, which aims to improve simultaneously the machines' torque and the power factor, uses the cyclic coordinate method coupled with the magnetostatic finite-element (FE) field solutions. The optimization results regarding these two types of machines, which provide the optimized rotor geometrical dimensions and the influence of the current angle, are discussed.
Citation
Slimane Tahi, Rachid Ibtiouen, and Mhamed Bounekhla, "Design Optimization of Two Synchronous Reluctance Machine Structures with Maximized Torque and Power Factor," Progress In Electromagnetics Research B, Vol. 35, 369-387, 2011.
doi:10.2528/PIERB11091101
References

1. Zaïm, M. E., "High-speed solid rotor synchronous reluctance machine design and optimization," IEEE Transactions on Magnetics, Vol. 45, No. 3, 1796-1799, 2009.
doi:10.1109/TMAG.2009.2012824

2. Boglietti, A., A. Cavagnino, M. Pastorelli, and A. Vagati, "Experimental comparison of induction and synchronous reluctance motors performance," Conference Record of the 2005 Industry Applications Conference, Fortieth IAS Annual Meeting, Vol. 1, 474-479, 2005.
doi:10.1109/IAS.2005.1518350

3. Park, J. D., C. Khalizadeh, and H. Hofmann, "Design and control of high-speed solid-rotor synchronous reluctance drive with three-phase LC filter," Conference Record of the 2005 Industry Applications Conference, Fortieth IAS Annual Meeting, Vol. 1, 715-722, 2005.
doi:10.1109/IAS.2005.1518386

4. Hofmann, H. and S. R. Sanders, "High-speed synchronous reluctance machine with minimized rotor loss," IEEE Transactions on Industry Applications, Vol. 36, No. 2, 531-539, 2000.
doi:10.1109/28.833771

5. Matsuo, T. and T. A. Lipo, "Rotor design optimization of synchronous reluctance machine," IEEE Transactions on Energy Conversion, Vol. 9, No. 2, 359-365, 1994.
doi:10.1109/60.300136

6. Kim, K.-C., J. S. Ahn, S. H. Won, J.-P. Hong, and J. Lee, "A study on the optimal design of SynRM for the high torque and power factor," IEEE Transactions on Magnetics, Vol. 43, No. 6, 2543-2545, 2007.
doi:10.1109/TMAG.2007.893302

7. Hudák, P., V. Hrabovcová, and P. Rafajdus, "Geometrical dimension influence of multi-barrier rotor on reluctance synchronous motor performances," International Symposium on Power Electronics, Electrical Drives, Automation and Motion SPEEDAM, 346-351, 2006.
doi:10.1109/SPEEDAM.2006.1649796

8. Chalmers, B. J. and L. Musaba, "Design and field-weakening performance of a synchronous reluctance motor with axially laminated rotor," IEEE Transactions on Industry Applications, Vol. 34, No. 5, 1035-1041, 1998.
doi:10.1109/28.720443

9. Raminosoa, T., I. Rasoanarivo, and F. M. Sargos, "Reluctance network analysis of high power synchronous reluctance motor with saturation and iron losses considerations," 12th International Power Electronics and Motion Control Conference, 1052-1057, 2006.
doi:10.1109/EPEPEMC.2006.283301

10. Lipo, T. A., A. Vagati, L. Malesani, and T. Fukao, "Synchronous reluctance motors and drives --- A new alternative," Proc. IEEE IAS Annual Meeting, Tutorial Course, Electric Machines Committee, 1992.

11. Kolehmainen, J., "Synchronous reluctance motor with form blocked rotor," IEEE Transactions on Energy Conversion, Vol. 25, No. 2, 450-457, 2010.
doi:10.1109/TEC.2009.2038579

12. Meeker, D. C., Finite element method magnetics, version 4.0.1, (03 December 2006 build), available at: http://femm.foster-miller.net.

13. Popescu, M., "Prediction of the electromagnetic torque in synchronous machines through Maxwell stress harmonic filter (HFT) method," Electrical Engineering, Vol. 89, No. 2, 117-125, 2006.
doi:10.1007/s00202-005-0323-1

14. Zarko, D., A systematic approach to optimized design of permanent magnet motors with reduced torque pulsations, Ph.D. Dissertation, University of Wisconsin, Madison, 2004.

15. Kamper, M. J., F. S. van der Merwe, and S. Williamson, "Direct finite element design optimisation of the cageless reluctance synchronous machine," IEEE Transactions on Energy Conversion, Vol. 11, No. 3, 547-555, 1996.
doi:10.1109/60.537006

16. Moghaddam, R. R., Synchronous reluctance machine (SynRM) design, M.S. Thesis in Power Electrical Engineering, Royal Institute of Technology (KTH), Stockholm, Sweden, 2007.

17. Bazaraa, M. S., H. D. Sherall, and C. M. Shetty, Nonlinear Programming Theory and Algorithms, John Wiley & Sons, Inc., 1993.

18. Zaïm, M. E., K. Dakhouche, and M. Bounekhla, "Design for torque ripple reduction of a three-phase switched reluctance machine," IEEE Transactions on Magnetics, Vol. 38, No. 2, 1189-1192, 2002.
doi:10.1109/20.996304

19. Haataja, J., A comparative performance study of four-pole induction motors and synchronous reluctance motor in variable speed drives, Ph.D. Thesis, Lappeenranta University of Technology, 2003.