Vol. 36
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-11-08
Cartesian Multipole Expansions and Tensorial Identities
By
Progress In Electromagnetics Research B, Vol. 36, 89-111, 2012
Abstract
We establish the exact formulas of multipole expansion in Cartesian coordinates for the most general distribution of charges and currents (including toroidal sources).
Citation
E. Radescu, Jr., and Georgeta Vaman, "Cartesian Multipole Expansions and Tensorial Identities," Progress In Electromagnetics Research B, Vol. 36, 89-111, 2012.
doi:10.2528/PIERB11090702
References

1. Dubovik, , V. M., A. A. Tcheshkov, and , "Multipolnoe razlojenie v classichescoi i v kvantovoi torii polia i izluchenie," Fiz. Elem Chastits At. Yadra,/ Sov. J. Part. Nucl.,, Vol. 5, , 791/318-837, 1974.

2. Dubovik, , V. M., V. V. Tugushev, and , "Toroid moments in electrodynamics and solid-state physics," Phys. Rep.,, Vol. 187, 145-202, , 1990.
doi:10.1016/0370-1573(90)90042-Z

3. Kaelberer, , T., V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, , "Toroidal dipolar response in a metamaterial,"," Science,, Vol. 330, 1510-1512, 2010..
doi:10.1126/science.1197172

4. Petschulat, J., , "Understanding the electric and magnetic response of isolated metaatoms by means of a multipolar field decomposition," Optics Express, , Vol. 18, , 14455-14466, 2010.

5. Kuo, C. Y., R. L. Chern, and C. C. Chang, , "Multipole expansion of electromagnetic scattering wave by a small cylindrical pore on a perfect conducting semi-infinite half space," Progress In Electromagnetics Research B, , Vol. 26, 179-212, 2010.
doi:10.2528/PIERB10063008

6. Andrews, D. L. and W. A. Ghoul, "Irreducible fourth-rank Cartesian tensors," Phys. Rev. A,, Vol. 25, , 2647-2657, 1982.
doi:10.1103/PhysRevA.25.2647

7. Radescu, , E. E., G. Vaman, and , "Exact calculation of the angular momentum loss, recoil force, and radiation intensity for an arbitrary source in terms of electric, magnetic and toroid," multipoles," Phys. Rev. E, , Vol. 65, , 046609-1-7, 2002.

8. Rowe, "Spherical delta functions and multipole expansions," J. Math. Phys., Vol. 19, , 1962-1968, 1978.
doi:10.1063/1.523927

9. Weniger, , E. J., , "Addition Theorems as three-dimensional Taylor expansions," Int. J. Quant. Chem.,, Vol. 76, , 280-295, 2000..
doi:10.1002/(SICI)1097-461X(2000)76:2<280::AID-QUA16>3.0.CO;2-C

10. Edmonds, A., , Deformations of Atomic Nuclei, Publishing House for Foreign Literature, , 1958 .

11. Applequist, J., , "Traceless cartesian tensor forms for spherical harmonic functions: New theorems and applications to electrostatics of dielectric media," J. Phys. A,, Vol. 22, , 4303-4330, 1989.
doi:10.1088/0305-4470/22/20/011

12. Landau, L. D. and E. M. Lifschitz, Course of Theoretical Physics, Pergamon Press, , 1993.

13. Jackson, J. D., Classical Electrodynamics,, Wiley, , 1999..

14. Hobson, , E. W., , The Theory of Spherical and Ellipsoidal Harmonics, , 1931.

15. Prudnikov, , A. P., Y. A. Brychkov, and O. I. Marichev, "Integrals and Series, ,", 1986.