Vol. 27
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-11-08
A Wavelet Operator on the Interval in Solving Maxwell's Equations
By
Progress In Electromagnetics Research Letters, Vol. 27, 133-140, 2011
Abstract
In this paper, a differential wavelet-based operator defined on an interval is presented and used in evaluating the electromagnetic field described by Maxwell's curl equations, in time domain. The wavelet operator has been generated by using Daubechies wavelets with boundary functions. A spatial differential scheme has been performed and it has been applied in studying electromagnetic phenomena in a lossless medium. The proposed approach has been successfully tested on a bounded axial-symmetric cylindrical domain.
Citation
Guido Ala, Elisa Francomano, and Fabio Viola, "A Wavelet Operator on the Interval in Solving Maxwell's Equations," Progress In Electromagnetics Research Letters, Vol. 27, 133-140, 2011.
doi:10.2528/PIERL11090505
References

1. Beylkin , G., "On the representation of operators in bases of compactly supported wavelets," SIAM J. Numer. Anal., Vol. 6, No. 6, 1716-1740, 1992.
doi:10.1137/0729097

2. Beylkin, G., "Wavelets and fast numerical algorithms," Lecture Notes for Short Course --- Proceedings of Symposia in Applied Mathematics, Vol. 47, 89-117, 1993.

3. Cohen, A., I. Daubechies, and P. Vial, "Multiresolution analysis, wavelets and fast algorithms on an interval," Appl. Comput. Harmon. Anal., Vol. 1, 100-115, 1993.

4. Cohen, A., I. Daubechies, and P. Vial, "Wavelets on the interval and fast wavelet transform," Appl. Comput. Harmon. Anal., Vol. 1, 54-81, 1993.
doi:10.1006/acha.1993.1005

5. Jameson, L., On the Daubechies-based Wavelets Differentiation Matrix, Nasa Contractor report 191583, 1995.

6. Jameson, L., "The differentiation matrix for Daubechies-based wavelets on a interval," SIAM J. Numer. Anal., Vol. 17, No. 2, 98-516, 1996.

7. Barmada, S. and M. Raugi, "A general tool for circuit analysis based on wavelet transform," Int. J. Circ. Theor. Appl., Vol. 28, 461-480, 2000.
doi:10.1002/1097-007X(200009/10)28:5<461::AID-CTA117>3.0.CO;2-9

8. Barmada , S. and M. Raugi, "Space-time wavelet expansion iterative solution of non-uniform transmission line with arbitrary loads," Int. J. Circ. Theor. Appl., Vol. 14, 219-235, 2001.

9. Barmada, S., A. Musolino, and M. Raugi, "Wavelet-based time-domain solution of multiconductor transmission lines with skin and proximity effect," IEEE Trans. Electromagn. Compat., Vol. 47, 77-780, 2005.

10. Barmada, S., A. Musolino, and M. Raugi, "Analysis of Integrated circuit systems by an innovative wavelet-based scattering matrix approach," IEEE Trans. Adv. Pack., Vol. 30, 86-96, 2007.
doi:10.1109/TADVP.2006.890203

11. Daubechies , I., "Ten Lectures on Wavelets," SIAM, 1992.

12. Rubinacci, , G., A. Tamburrino, S. Ventre, and F. Villone, "Interpolating wavelets for the solution of Maxwell equations in the time domain," IEEE Trans. on Magn., Vol. 34, No. 5, 2775-2778, 1998.
doi:10.1109/20.717645

13. Pinho, P., M. O. Domingues, P. J. S. G. ferreira, S. M. Gomes, A. Gomide, and J. R. Pereira, "Interpolating wavelets and adaptive finite di®erence schemes for solving Maxwell's equations: The effects of gridding," IEEE Trans. on Magn., Vol. 43, No. 3, 1013-1022, 2007.
doi:10.1109/TMAG.2006.889050

14. Taflove , A. and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, Boston, 2000.