1. ICNIRP (International Commission on Non-Ionizing Radiation Protection) "Guideline for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)," Health Phys., Vol. 74, 494-522, 1998.
2. IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Field, 3 kHz to 300 GHz (C95.1), 2005.
3. Sabbah, A. I., N. I. Dib, and M. A. Al-Nimr, "SAR and temperature elevation in a multi-layered human head model due to an obliquely incident plane wave," Progress In Electromagnetics Research M, Vol. 13, 95-108, 2010.
doi:10.2528/PIERM10051502
4. Omar, A. A., "Complex image solution of SAR inside a human head illuminated by a finite-length dipole," Progress In Electromagnetics Research B, Vol. 24, 223-239, 2010.
doi:10.2528/PIERB10062604
5. Liu, Y., Z. Liang, and Z. Yang, "Computation of electromagnetic dosimetry for human body using parallel FDTD algorithm combined with interpolation technique," Progress In Electromagnetic Research, Vol. 82, 95-107, 2008.
doi:10.2528/PIER08021603
6. Mohsin, S. A., N. M. Sheikh, and U. Saeed, "MRI induced heating of deep brain stimulation leads: Effect of the air-tissue interface," Progress In Electromagnetics Research, Vol. 83, 81-91, 2008.
doi:10.2528/PIER08040504
7. Lopez-Martin, E., J. C. Bregains, F. J. Jorge-Barreiro, J. L. Sebastián-Franco, E. Moreno-Piquero, and F. Ares-Pena, "An experimental set-up for measurement of the power absorbed from 900MHz GSM standing waves by small animals, illustrated by application to picrotoxin-treated rats," Progress In Electromagnetics Research, Vol. 87, 149-165, 2008.
doi:10.2528/PIER08101307
8. Hirata, A., H. Sugiyama, and O. Fujiwara, "Estimation of core temperature elevation in humans and animals for whole-body averaged SAR," Progress In Electromagnetics Research, Vol. 99, 53-70, 2009.
doi:10.2528/PIER09101603
9. Korniewicz, H., "The first resonance of arounded human being exposed to electric field," IEEE Trans. Electromagnet. Compat., Vol. 37, No. 2, 296-299, 1995.
doi:10.1109/15.385898
10. Durney, C. H., "Electromagnetic dosimetry for models of humans and animals: A review of theoretical and numerical techniques," Proc. IEEE, Vol. 68, 33-40, 1980.
doi:10.1109/PROC.1980.11578
11. Gandhi, O. P., "State of knowledge for electromagnetic absorbed dose in man and animals," Proc. IEEE, Vol. 68, 24-32, 1980.
doi:10.1109/PROC.1980.11577
12. Dimbylow, P. J., "FDTD calculations of the whole-body average SAR in an anatomically realistic voxel model of the human body from 1MHz to 1 GHz," Phys. Med. Biol., Vol. 42, 479-490, 1997.
doi:10.1088/0031-9155/42/3/003
13. Dimbylow, P. J., "Fine resolution calculation s of SAR in the human body for frequencies up to 3 GHz," Phys. Med. Biol., Vol. 47, 2835-2846, 2002.
doi:10.1088/0031-9155/47/16/301
14. Wang, J., S. Kodera, O. Fujiwara, and S. Watanabe, "FDTD calculation of whole-body average SAR in adult and child models for frequencies from 30MHz to 3 GHz," Phys. Med. Biol., Vol. 51, 4119-4127, 2006.
doi:10.1088/0031-9155/51/17/001
15. Dimbylow, P., "Resonance behavior of whole-body average specific absorption rate (SAR) in the female voxel models, NAOMI," Phys. Med. Biol., Vol. 50, 4053-4063, 2005.
doi:10.1088/0031-9155/50/17/009
16. Conil, E., A. Hadjem, F. Lacroux, M. F. Wong, and J. Wiart, "Variability analysis of SAR from 20MHz to 2.4 GHz for different adult and child models using finite-difference time-domain," Phys. Med. Biol., Vol. 53, 1511-1525, 2008.
doi:10.1088/0031-9155/53/6/001
17. Dimbylow, P. and W. Bolch, "Whole-body-averaged SAR from 50MHz to 4 GHz in the University of Florida child voxel phantoms," Phys. Med. Biol., Vol. 52, 6639-6649, 2007.
doi:10.1088/0031-9155/52/22/006
18. Hirata, A., K. Yanase, O. Fujiwara, A. Y. Simba, T. Arima, and S. Watanabe, "Estimation of whole-body averaged SAR of grounded human at resonance frequency from ankle current of simplified phantom," Proc. EMC Europe, O_Tu_D1, 2011.
19. Zhang, M. and A. Alden, "Calculation of whole-body SAR from a 100MHz dipole antenna," Progress In Electromagnetics Research, Vol. 119, 133-153, 2011.
doi:10.2528/PIER11052005
20. Takahashi, Y., T. Arima, P. Pongpaibool, S. Watanabe, and T. Uno, "Development of a liquid-type human-body equivalent antenna using NaCl solution," Int'l Zurich Symp. Electromagnet. Compat., BIO2-5, Sep. 2007.
21. Nagaoka, T., S. Watanabe, K. Sakurai, E. Kunieda, S. Watanabe, M. Taki, and Y. Yamanaka, "Development of realistic high-resolution whole-body voxel models of Japanese adult males and females of average height and weight, and application of models to radio-frequency electromagnetic-field dosimetry," Phys. Med. Biol., Vol. 49, 1-15, 2004.
doi:10.1088/0031-9155/49/1/001
22. Nagaoka, T., E. Kunieda, and S. Watanabe, "Proportion-corrected scaled voxel models for Japanese children and their application to the numerical dosimetry of specific absorption rate for frequencies from 30MHz to 3 GHz," Phys. Med. Biol., Vol. 52, 6695-6711, 2008.
doi:10.1088/0031-9155/53/23/004
23. Nagaoka, T., T. Togashi, K. Saito, M. Takahashi, K. Ito, and S. Watanabe, "An anatomically realistic whole-body pregnant-woman model and specific absorption rates for pregnant-woman exposure to electromagnetic plane waves from 10MHz to 2 GHz," Phys. Med. Biol., Vol. 52, 6731-6745, 6731.
doi:10.1088/0031-9155/52/22/012
24. Mason, P. A., W. D. Hurt, T. J. Walter, A. D'Amdrea, P. Gajsek, K. L. Ryan, D. A. Nelson, K I. Smith, and J. M. Ziriax, "Effects of frequency, permittivity and voxel size on predicted specific absorption rate values in biological tissue during electromagnetic-field exposure," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 11, 2050-2058, 2000.
doi:10.1109/22.884202
25. Christ, A., W. Kainz, E. G. Hahn, K. Honegger, M. Zefferer, E. Neufeld, W. Rascher, R. Janka, W. Bautz, J. Chen, B. Keifer, P. Schmit, H. P. Hollenbach, J. Shen, M. Oberle, D. Szczerba, A. Kam, J. W. Guag, and N. Kuster, "The Virtual Family --- development of surface --- based on anatomical methods of two adults and two children for dosimetric simulations," Phys. Med. Biol., Vol. 55, 22-38, 2010.
26. Taflove, A. and S. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd Ed., Artech House Publishers, 2003.
27. Dimbylow, P. J., A. Hirata, and T. Nagaoka, "Intercomparison of whole-body averaged SAR in European and Japanese voxel phantom," Phys. Med. Biol., Vol. 53, 5883-5898, 2008.
doi:10.1088/0031-9155/53/20/022
28. Gabriel, C., "Compilation of the dielectric properties of body tissues at RF and microwave frequencies," Brooks Air Force Technical Report, AL/OE-TR-1996-0037, 1996.
29. Penman, A. D. and W. D. Johnson, "The changing shape of the body mass index distribution curve in the population: Implications for public health policy to reduce the prevalence of adult obesity," Prev. Chronic Dis., Vol. 3, No. 3, A74, 2006.
30. Conil, E., A. Hadjem, A. El Habachi, and J. Wiart, "Whole body exposure at 2100MHz induced by plane wave of random incidences in a population," Comptes Redus Phs., Vol. 11, 531-540, 2010.
doi:10.1016/j.crhy.2010.11.007
31. Conil, E., A. Hadjem, A. Gati, M.-F. Wong, and J. Wiart, "Influence of plane-wave incidence angle on whole body and local exposure at 2100 MHz," IEEE Trans. Electromagnet. Compat., Vol. 53, No. 1, 48-52, 2011.
doi:10.1109/TEMC.2010.2061849
32. Hirata, A., H. Watanabe, and T. Shiozawa, "SAR and temperature rise in the human eye induced by obliquely incident plane waves," IEEE Trans. Electromagnet. Compat., Vol. 44, No. 4, 594-596, Nov. 2002.