Vol. 27
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-11-05
Applications of a Three-Dimensional FDTD Method with Weakly Conditional Stability to the Analysis of Microstrip Filters with Fine Scale Structures
By
Progress In Electromagnetics Research Letters, Vol. 27, 101-115, 2011
Abstract
In three-dimensional space, the hybrid implicit-explicit finite-difference time-domain (HIE-FDTD) method is weakly conditionally stable, only determined by two space-discretizations, which is very useful for problems with fine structures in one direction. Its numerical dispersion errors with nonuniform cells are discussed and compared in this paper. To enlarge the applicable field of the HIE-FDTD method to open space, the absorbing boundary conditions (ABCs) for this method are also introduced and applied. Two microstrip filters with fine scale structures in one direction are solved by the HIE-FDTD method. Conventional FDTD method and alternating-direction implicit FDTD (ADI-FDTD) method are also used for comparing. Results analyzed by the HIE-FDTD method agree well with those from conventional FDTD, and the required central process unit (CPU) time is much less than that of the ADI-FDTD method.
Citation
Jing Lan, Yang Yang, and Jing Yi Dai, "Applications of a Three-Dimensional FDTD Method with Weakly Conditional Stability to the Analysis of Microstrip Filters with Fine Scale Structures," Progress In Electromagnetics Research Letters, Vol. 27, 101-115, 2011.
doi:10.2528/PIERL11082213
References

1. Taflove, A., Computational Electrodynamics: The Finite-di®erence Time-domain Method, Artech House, Norwood, MA, 1996.

2. Namiki, T., "A new FDTD algorithm based on alternating direction implicit method," IEEE Trans. Microwave Theory Tech., Vol. 47, 2003-2007, 1999.
doi:10.1109/22.795075

3. Garcia, , S. G., T. W. Lee, and S. C. Hagness, "On the accuracy of the ADI-FDTD method," IEEE Antennas Wireless Propagat. Lett., Vol. 1, 31-34, 2002.
doi:10.1109/LAWP.2002.802583

4. Heh, , D. Y. and E. L. Tan, "Unified efficient fundamental ADI-FDTD schemes for lossy media," Progress In Electromagnetics Research B, Vol. 32, 217-242, 2011.
doi:10.2528/PIERB11051801

5. Yang, Y., Z. H. Fan, D. Z. Ding, and S. B. Liu, "Extend two-step preconditioning technique for the Crank-Nicolson finite-difference time-domain method to analyze the 3D microwave circuits," International Journal of RF and Microwave Computer-aided Engineering, Vol. 19, No. 4, 460-469, Jul. 2009.
doi:10.1002/mmce.20369

6. Chen, J. and J. Wang, "Comparison between HIE-FDTD method and ADI-FDTD method," Microwave Opt. Technol. Lett., Vol. 49, 1001-1005, May 2007.
doi:10.1002/mop.22340

7. Chen , J., J. Wang, and C. Tian, "Three-dimensional hybrid implicit explicit finite-difference time-domain method in the cylindrical coordinate system," IEEE Trans. Antennas Propagat., Vol. 3, 1254-1261, Jan. 2009.

8. Mur, G., "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations," IEEE Trans. Electromagn. Compat., Vol. 23, No. 4, 377-382, Nov. 1981.
doi:10.1109/TEMC.1981.303970

9. Xiao, F., X. H. Tang, and L. Wang, "Stability and numerical dispersion analysis of a 3D hybrid implicit-explicit FDTD method," IEEE Trans. Antennas Propagat., Vol. 56, 3346-3350, 2008.
doi:10.1109/TAP.2008.929528

10. Fu, W. M. and E. L. Tan, "Stability and dispersion analysis for ADI-FDTD method in lossy media," IEEE Trans. Antennas Propagat., Vol. 55, No. 4, 1095-1102, Apr. 2007.
doi:10.1109/TAP.2007.893378

11. Gedney , S. D., "An anisotropic perfectly matched layer absorbing medium for the truncation of FDTD lattices," IEEE Trans. Antennas and Propagat., Vol. 44, 1630-1639, 1996.
doi:10.1109/8.546249

12. Yuan, W. and E. P. Li, "Numerical dispersion and impedance analysis for 3D perfectly matched layers used for truncation of the FDTD computations," Progress In Electromagnetics Research, Vol. 47, 193-212, 2004.
doi:10.2528/PIER03121002

13. Shreim, A. M. and M. F. Hadi, "Integral PML absorbing boundary conditions for the high-order M24 FDTD algorithm," Progress In Electromagnetics Research, Vol. 76, 141-152, 2007.
doi:10.2528/PIER07070303

14. Zhang, , Y. Q. and D. B. Ge, "A unified FDTD approach for electromagnetic analysis of dispersive objects," Progress In Electromagnetics Research, Vol. 96, 155-172, 2009.
doi:10.2528/PIER09072603

15. Tay , W. C. and E. L. Tan, "Implementation of the Mur first order absorbing boundary condition in e±cient ADI-FDTD method," IEEE Int. Symp. Antennas Propagat. USNC/URSI Nat. Radio Sci. Meeting, Charleston, SC, Jun. 2009.

16. Cakir, G., "Design of a compact and wideband microstrip bandstop filter," Microwave Opt. Technol. Lett., Vol. 50, 2612-2614, 2008.
doi:10.1002/mop.23742

17. Guan , X. H., S. Jiang, L. Shen, H. W. Liu, G. H. Li, and D. M. Xu, "A microstrip dual-band bandpass filter based on a novel admittance inverter," IEEE MTT-S International Microwave Symposium, 577-580, 2010.