1. Taflove, A., Computational Electrodynamics: The Finite-di®erence Time-domain Method, Artech House, Norwood, MA, 1996.
2. Namiki, T., "A new FDTD algorithm based on alternating direction implicit method," IEEE Trans. Microwave Theory Tech., Vol. 47, 2003-2007, 1999.
doi:10.1109/22.795075
3. Garcia, , S. G., T. W. Lee, and S. C. Hagness, "On the accuracy of the ADI-FDTD method," IEEE Antennas Wireless Propagat. Lett., Vol. 1, 31-34, 2002.
doi:10.1109/LAWP.2002.802583
4. Heh, , D. Y. and E. L. Tan, "Unified efficient fundamental ADI-FDTD schemes for lossy media," Progress In Electromagnetics Research B, Vol. 32, 217-242, 2011.
doi:10.2528/PIERB11051801
5. Yang, Y., Z. H. Fan, D. Z. Ding, and S. B. Liu, "Extend two-step preconditioning technique for the Crank-Nicolson finite-difference time-domain method to analyze the 3D microwave circuits," International Journal of RF and Microwave Computer-aided Engineering, Vol. 19, No. 4, 460-469, Jul. 2009.
doi:10.1002/mmce.20369
6. Chen, J. and J. Wang, "Comparison between HIE-FDTD method and ADI-FDTD method," Microwave Opt. Technol. Lett., Vol. 49, 1001-1005, May 2007.
doi:10.1002/mop.22340
7. Chen , J., J. Wang, and C. Tian, "Three-dimensional hybrid implicit explicit finite-difference time-domain method in the cylindrical coordinate system," IEEE Trans. Antennas Propagat., Vol. 3, 1254-1261, Jan. 2009.
8. Mur, G., "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations," IEEE Trans. Electromagn. Compat., Vol. 23, No. 4, 377-382, Nov. 1981.
doi:10.1109/TEMC.1981.303970
9. Xiao, F., X. H. Tang, and L. Wang, "Stability and numerical dispersion analysis of a 3D hybrid implicit-explicit FDTD method," IEEE Trans. Antennas Propagat., Vol. 56, 3346-3350, 2008.
doi:10.1109/TAP.2008.929528
10. Fu, W. M. and E. L. Tan, "Stability and dispersion analysis for ADI-FDTD method in lossy media," IEEE Trans. Antennas Propagat., Vol. 55, No. 4, 1095-1102, Apr. 2007.
doi:10.1109/TAP.2007.893378
11. Gedney , S. D., "An anisotropic perfectly matched layer absorbing medium for the truncation of FDTD lattices," IEEE Trans. Antennas and Propagat., Vol. 44, 1630-1639, 1996.
doi:10.1109/8.546249
12. Yuan, W. and E. P. Li, "Numerical dispersion and impedance analysis for 3D perfectly matched layers used for truncation of the FDTD computations," Progress In Electromagnetics Research, Vol. 47, 193-212, 2004.
doi:10.2528/PIER03121002
13. Shreim, A. M. and M. F. Hadi, "Integral PML absorbing boundary conditions for the high-order M24 FDTD algorithm," Progress In Electromagnetics Research, Vol. 76, 141-152, 2007.
doi:10.2528/PIER07070303
14. Zhang, , Y. Q. and D. B. Ge, "A unified FDTD approach for electromagnetic analysis of dispersive objects," Progress In Electromagnetics Research, Vol. 96, 155-172, 2009.
doi:10.2528/PIER09072603
15. Tay , W. C. and E. L. Tan, "Implementation of the Mur first order absorbing boundary condition in e±cient ADI-FDTD method," IEEE Int. Symp. Antennas Propagat. USNC/URSI Nat. Radio Sci. Meeting, Charleston, SC, Jun. 2009.
16. Cakir, G., "Design of a compact and wideband microstrip bandstop filter," Microwave Opt. Technol. Lett., Vol. 50, 2612-2614, 2008.
doi:10.1002/mop.23742
17. Guan , X. H., S. Jiang, L. Shen, H. W. Liu, G. H. Li, and D. M. Xu, "A microstrip dual-band bandpass filter based on a novel admittance inverter," IEEE MTT-S International Microwave Symposium, 577-580, 2010.