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Abstract—In three-dimensional space, the hybrid implicit-explicit
finite-difference time-domain (HIE-FDTD) method is weakly condi-
tionally stable, only determined by two space-discretizations, which is
very useful for problems with fine structures in one direction. Its nu-
merical dispersion errors with nonuniform cells are discussed and com-
pared in this paper. To enlarge the applicable field of the HIE-FDTD
method to open space, the absorbing boundary conditions (ABCs) for
this method are also introduced and applied. Two microstrip filters
with fine scale structures in one direction are solved by the HIE-FDTD
method. Conventional FDTD method and alternating-direction im-
plicit FDTD (ADI-FDTD) method are also used for comparing. Re-
sults analyzed by the HIE-FDTD method agree well with those from
conventional FDTD, and the required central process unit (CPU) time
is much less than that of the ADI-FDTD method.

1. INTRODUCTION

The finite-difference time-domain (FDTD) method [1] has been applied
to varieties of electromagnetic analysis fields for its convenience and
accuracy. Nevertheless, as an explicit time-stepping scheme, the
FDTD method must be satisfied with the Courant-Friedrich-Levy
(CFL) condition, which makes it unavailable for electrically fine scale
structures.
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To eliminate the CFL constraint on the time step size in
conventional FDTD, some unconditionally stable implicit methods,
such as ADI-FDTD method [2–4], Crank-Nicloson FDTD (CN-FDTD)
method [5], are advanced. These implicit methods have been proved
to be very computationally efficient when the time step exceeding the
CFL condition, but they also have restrictions. It is well known that
the ADI-FDTD method will result in numerical dispersion error for
larger step size. The CN-FDTD method has less dispersion and higher
accuracy, but it is very memory and CPU-time expensive, which makes
it inefficient in fine scale problems.

Recently, a new method — HIE-FDTD method [6, 7] in 3-D case
based on the advantage of ADI-FDTD method has been developed.
Similarly but not identically, the HIE-FDTD method keeps a weaker
CFL condition than conventional FDTD method, and the time step is
only determined by two space discretizations in this scheme. It only
needs a single sub-iteration (two tri-diagonal matrices and four explicit
updates) while the ADI-FDTD method needs two (six tri-diagonal
matrices and six explicit updates).

In this paper, the stability of HIE-FDTD method is derived. As
the HIE-FDTD method is very useful for problems with fine structures
in one direction, its numerical dispersion errors with nonuniform cells
is discussed and compared. The HIE-FDTD method with Mur’s
ABC [8] is developed and operated to simulate two microstrip filters
with fine scale structures in one direction. The numerical results from
conventional FDTD method and ADI-FDTD method are also rendered
for comparing. It is exhibited that the HIE-FDTD method has higher
approximation with conventional FDTD method than the ADI-FDTD
method especially for larger time step size, and the CPU time is much
shorter than that of the ADI-FDTD method. It is very useful for
problems that need a fine mesh in one direction.

2. FORMULATION FOR 3-D HIE-FDTD METHOD

In an isotropic lossless region with permittivity ε and permeability µ,
assuming the narrow side along the z direction, the matrix formulations
of the HIE-FDTD method for a full 3-D wave are presented in
Equation (1). It is shown that the calculation for one discrete time
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step is performed using only one procedure.
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Similarly, Ey components are obtained by a similar equation. Ex
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and Ey components are updated implicitly after solving the above
tri-diagonal matrix equations. Then Hx and Hy components can be
calculated explicitly. Therefore, at each time step, two tri-diagonal
matrices and four explicit updates should be solved in this HIE-FDTD
method. Comparatively, the ADI-FDTD method needs to solve six
tri-diagonal matrices and six explicit updates for a full update, which
makes it computationally inefficient.

3. NUMERICAL STABILITY AND NUMERICAL
DISPERSION ANALYSIS FOR 3-D HIE-FDTD METHOD

3.1. Numerical Stability for 3-D HIE-FDTD Method

In the matrix of Equation (1), we let:

∂

∂u
f = j0

1
∆u/2

sin
(

ku∆u

2

)
f = 2j0Wuf (3)

and
V n

u (i, j, k) = V0uζnf(i, j, k) (4)

where f(i, j, k) = ej0(ikx∆x+jky∆y+kkz∆z), j0 =
√−1, Wu =

1
∆u sin(ku∆u

2 ), ku are wave numbers, u = x, y, z, V = E, H, and
ζ indicates the growth factor.

The new matrix is represented as:
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where p = ∆t
ε , q = ∆t

µ , u = x, y, z.
In order for this matrix to have a nonzero solution, the

determinant of its coefficient should be zero. Then we can obtain a
polynomial about the growth factor ζ:

(ζ − 1)2
[
(1 + rz)ζ2 − 2 (1− 2rx − 2ry − rz) ζ + 1 + rz

]2 = 0 (6)

where ru = (c∆t)2 W 2
u , u = x, y, z.
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Then ζ1 = ζ2 = 1, ζ3 = ζ4 = ζ5 = ζ6 =
(1−2rx−2ry−rz)±2

√
−(1−rx−ry)(rx+ry+rz)

1+rz

To satisfy the |ζi| ≤ 1 condition:

rx + ry ≤ 1 (7)

Derived from the above formulations, we can obtain the stability
condition of the HIE-FDTD method is solved as following:

∆tHIE-FDTD ≤ 1
c

1√
1

(∆x)2
+ 1
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(8)

In conventional 3-D FDTD method, the stability condition is the
CFL condition [1] expressed as:
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c
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(9)

Equation (8) shows that the HIE-FDTD method is only
determined by two spatial discretions in three dimensional space. If
the computational problem has fine scale structures in z-direction,
the maximum time step of conventional FDTD method will be very
small, which makes conventional FDTD computationally inefficient,
but the HIE-FDTD method is not limited by the fine scale structures.
As a result, the CPU time for the HIE-FDTD method can be saved
compared with that of conventional FDTD method.

3.2. Numerical Dispersion Analysis for 3-D HIE-FDTD
Method

In this paper, the HIE-FDTD method is employed to solve the
problems with fine scale structures in one direction, so the dispersion
errors of the HIE-FDTD method [9] with nonuniform cells is discussed.
Conventional FDTD method and ADI-FDTD method are compared.
The CFLN [1] (Courant-Friedrich-Levy Number) of both the HIE-
FDTD method and conventional FDTD method are the largest values
which satisfy their own CFL conditions. The ADI-FDTD method
has the same CFLN as the HIE-FDTD method for comparison. In
Figs. 1(a)–(e), the normalized numerical phase speeds of the three
methods are shown respectively with ∆x = ∆y = 5∆z = λ/10, and θ
set as 0◦, 22.5◦, 45◦, 67.5◦, 90◦.

As shown in Fig. 1(a), when θ = 0◦ (kx = k sin θ cosφ =
0, ky = k sin θ sinφ = 0, kz = k cos θ = k), along the z axis, the
numerical dispersion error of the HIE-FDTD method is as large as
that of the ADI-FDTD method. In Figs. 1(b)–(e), as θ increases, the



106 Lan, Yang, and Dai

(a) (b)

(c) (d)

(e)

Figure 1. Comparison of the normalized numerical phase speed
for different methods with θ = 0◦, 22.5◦, 45◦, 67.5◦, 90◦ when
∆x = ∆y = 5∆z = λ/10.

dispersion error of the HIE-FDTD method ameliorates and approaches
conventional FDTD method, while the ADI-FDTD method [10]
deteriorates unfortunately.

In summarizing the above results, it can be concluded that the
numerical dispersion of the HIE-FDTD method is better than that
of the ADI-FDTD method, although the numerical dispersions of the
two methods are both the same along the z axis direction for the z
axis is not the diagonal direction when updating Eu (u = x, y, z)
components.
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4. IMPLEMENTION OF MUR’S ABC IN THE 3-D
HIE-FDTD METHOD

To enlarge the applicable field of the HIE-FDTD method to open space
and semi-open space problems, ABCs for the HIE-FDTD method are
presented in this paper. The Mur’s ABC [8, 15] is chosen to develop
in the HIE-FDTD method for its high efficiency while the commonly-
used PML ABC [11–14] is time-consuming in 3-D space, which is the
limitation of the PML ABC. Analyzing with Mur’s ABCs, space will
be divided into three sections (see Fig. 2), and the inner is the free
space, six borders

As an explicit direction in the updating step, the Ez (i = 1 ∼
imax − 1) variable at the borders boundary region y = 0 and y = jmax

of the Mur’s ABCs is (v is the speed of light in the medium):
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And the Ez variable at the corners y = 0 and y = jmax of the
Mur’s ABCs is:[
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Figure 2. The schematic of Mur’s ABC.
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As implicit directions in the updating step, the implementation
of the Mur’s first order ABC for Ex and Ey should be applied inside
the tri-diagonal matrix. Taking the Ex variable for example, it can be
updated by the tri-diagonal matrix when Ex (i = 1

2 ∼ imax − 1
2 ; j =

1 ∼ jmax − 1; k = 0 ∼ kmax):

AX = Y A =




b0 c0 0 · · · 0
a1 b1 c1 · · · 0

0 · · · . . . · · · ...
...

0 · · · akmax bkmax




,

X =




En+1
x

(
i + 1

2 , j, 0
)

...
En+1

x

(
i + 1

2 , j, k
)

...
En+1

x

(
i + 1

2 , j, kmax

)




, Y =




d0
...
...
dk
...
...
dkmax




(12)

While at the corners z = 0 and z = kmax, the coefficients of
the matrix needed special consideration and ABC should be used.
The field component Ex (i = 1

2 ∼ imax − 1
2 ; j = 1 ∼ jmax − 1;

k = 0, k = kmax) at the boundary z = 0 and z = kmax becomes
Equation (13) and Equation (14), when Ex (i = 1

2 ∼ imax − 1
2 ;

j = 0, j = jmax; k = 0, k = kmax) at the boundary j = 0 and
j = jmax is not concluded in the tri-diagonal matrix. Ex can be solved
by the Mur’s first order ABC directly.
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The ABCs of the Ey variable is similar to the ABCs of the above Ex.
It is known that the Mur’s ABC implemented in the ADI-FDTD

method must be the Mur’s first order ABC [14]. However, the
Mur’s second order ABC is implemented in the HIE-FDTD method in
above formulations, which shows higher accuracy than the ADI-FDTD
method.

5. NUMERICAL RESULTS AND COMPARISON

In order to give proof to the validity and effectiveness of the HIE-
FDTD method in solving problems with fine structures in one
direction, two novel planar microstrip filters are simulated by this
method. Conventional FDTD method and ADI-FDTD method are
also simulated for comparison.

5.1. Simulation for a Compact and Wideband Planar
Microstrip Bandstop Filter

The planar microstrip bandstop filter (see Fig. 3) [16] is located on
a substrate with εr = 2.33 and h = 0.783mm, and it is a bilaterally
symmetry geometry. The input/output impedance of the feedline is
50Ω. We chose the FDTD cell size: ∆x = 0.783mm, ∆y = 1.044mm,
∆z = 0.2485mm. Then the total number of the FDTD cells is
16 × 42 × 196. This bandstop filter is excited by a 60 ps Gaussian
pulse at one end of the structure (x-y plane, z = 16∆z), while the
observation points 1 and 2 are located at the edges of the structure (x-
y plane, z1 = 32∆z and z2 = 170∆z). The boundaries are terminated
with Mur’s ABC.

Figure 4 shows the time domain voltage waveforms at
observation 1 and observation 2, respectively. Simulation results show
that with a larger time step than that of conventional FDTD method,
the HIE-FDTD method is in good agreement with conventional FDTD
method, while the ADI-FDTD method exhibits an obvious splitting
error.
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Figure 3. The geometry of the microstrip planar bandstop filter.

Figure 4. The results of time domain waveforms for voltages at
observation 1 and observation 2 calculated by the HIE-FDTD method
(∆t = 2.0894 ps), conventional FDTD method (∆t = 0.7705 ps) and
the ADI-FDTD method (∆t = 2.0894 ps).

In Fig. 5, the 2-port S parameters are calculated on the base
of above time domain data by the three methods. Compared with
the result of conventional FDTD method, the error of the HIE-FDTD
method is in the allowable range.

The simulation time for the bandstop filter by the HIE-FDTD
method, conventional FDTD method and ADI-FDTD method are
summarized in Table 1. From Table 1, we can see that with the
weakly conditionally stability, the HIE-FDTD method has a larger ∆t
than conventional FDTD method. The CPU time for the HIE-FDTD
method can be shorter than conventional FDTD method. And the
CPU time for the HIE-FDTD method is almost 1/2 of that for the
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Figure 5. The 2-port S parameters for the bandstop filter calculated
by the HIE-FDTD method, conventional FDTD method and the ADI-
FDTD method.

Table 1. CPU times for the bandstop filter in the simulation by the
HIE-FDTD method, conventional FDTD method and the ADI-FDTD
method.

HIE-FDTD
(∆t = 2.0894 ps)

FDTD
(∆t = 0.7705 ps)

ADI-FDTD
(∆t = 2.0894 ps)

CPU times 268.73 s 356.31 s 497.92 s

ADI-FDTD method, so the HIE-FDTD method has higher efficiency
than the ADI-FDTD method.

5.2. Simulation for a Microstrip Dual-band Bandpass Filter

The microstrip dual-band bandpass filter (see Fig. 6) [17] is located
on a substrate with εr = 9.8 and h1 = 1.27 mm. The FDTD cell size
is chosen to be ∆x = 0.63mm, ∆y = 0.55 mm, ∆z = 0.05mm. The
total number of the FDTD cells is 8× 46× 650. The bandpass filter is
excited by a 100 ps modulated-Gaussian pulse at the point (x-y plane,
z = 24∆z), while the observation points 1 and 2 are located at the two
ends of this structure (x-y plane, z1 = 48∆z and z2 = 620∆z). The
Mur’s ABC is used for the termination.

Figure 7 shows the time domain voltage waveforms at
observation 1 and observation 2, respectively. It is shown that with
a larger time step than conventional FDTD method, both the HIE-
FDTD method and ADI-FDTD method have an obvious dispersion
error, but the dispersion error of the HIE-FDTD method is smaller
than that of the ADI-FDTD method.
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Figure 6. Configuration of the microstrip dual-band bandpass filter.

Figure 7. The results of time domain waveforms for voltages at
observation 1 and at observation 2 calculated by the HIE-FDTD
method (∆t = 1.3820 ps), conventional FDTD method (∆t =
0.1656 ps) and the ADI-FDTD method (∆t = 1.3820 ps).

In Fig. 8, the 2-port S parameters are calculated by the three
methods. Compared with the result of conventional FDTD method,
the error of the HIE-FDTD method is in the allowable range.

The simulation time for the dual-band bandpass filter by the HIE-
FDTD method, conventional FDTD method and ADI-FDTD method
are summarized in Table 2. From Table 2, we can again validate that
the CPU time for the HIE-FDTD method is almost 1/2 of that for the
ADI-FDTD method, and the computation time can be shorter than
conventional FDTD method for using a larger time step.
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Figure 8. The 2-port S parameters for the dual-band bandpass filter
calculated by the HIE-FDTD method, conventional FDTD method
and the ADI-FDTD method.

Table 2. CPU times for the dual-band bandpass filter in the
simulation by the HIE-FDTD method, conventional FDTD method
and the ADI-FDTD method.

HIE-FDTD
(∆t = 1.3820 ps)

FDTD
(∆t = 0.1656 ps)

ADI-FDTD
(∆t = 1.3820 ps)

CPU times 629.03 s 2407.92 s 1397.61 s

From the above comparison in time domain and frequency domain
parameters for two microstrip filters with fine scale structures in one
direction, the HIE-FDTD method is more efficient than conventional
FDTD and higher accuracy than the ADI-FDTD method.

6. CONCLUSION

In this paper, the 3-D weakly conditionally stability HIE-FDTD
method with Mur’s ABC is developed and implemented to analyze two
microstrip filters with fine structures in one direction. Its stability is
derived, only determined by ∆x and ∆y, and its numerical dispersion
errors with nonuniform cells is discussed and compared. Compared
with conventional FDTD method and ADI-FDTD method, it is
exhibited that the HIE-FDTD method has a higher efficiency than
conventional FDTD method and less deviation than the ADI-FDTD
method. The CPU time for the HIE-FDTD method can be reduced to
nearly 1/2 that of the ADI-FDTD method. The HIE-FDTD method
with Mur’s ABC is especially applicable to structures with very fine
size in one direction, which is confirmed by numerical examples.
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