Vol. 36
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-11-10
A Hierarchical Tree Shaped Power Distribution Network Based on Constructal Theory for EBG Structure Power Plane
By
Progress In Electromagnetics Research B, Vol. 36, 173-191, 2012
Abstract
In this paper, a tree-shaped power distribution network is designed based on constructal theory for planar EBG structure power plane on PCB, in order to optimize DC performance. Planar EBG structures suppress noise, and the network provides currents to them. This network is composed of hierarchical metal paths. The geometric parameters can be optimized based on the concept of constructal theory. The optimal performance consists of constructing the given area in a sequence of building blocks from the smallest size toward larger sizes hierarchically. In the meantime, a PCB power plane is developed with 2nd order tree-shaped constructal network. Analysis illustrates that EBG power plane with constructal tree shaped network has multifunctions of low voltage drop, current equidistribution and effective noise isolation.
Citation
Hui-Fen Huang, Shi-Yun Liu, and Wei Guo, "A Hierarchical Tree Shaped Power Distribution Network Based on Constructal Theory for EBG Structure Power Plane," Progress In Electromagnetics Research B, Vol. 36, 173-191, 2012.
doi:10.2528/PIERB11081002
References

1. Eudes, , T., B. Ravelo, and A. Louis, , "Transient response characterization of the high-speed interconnection RLCG-model for the signal integrity analysis," Progress In Electromagnetics Research, Vol. 112, 183-197, 2011.

2. Raimondo, , L., F. de Paulis, and A. Orlandi, , "A simple and e±cient design procedure for planar electromagnetic band-gap structures on printed circuit boards ," IEEE Transactions on Electromagnetic Compatibility,, Vol. 52, No. 3, Nov. 2010.

3. He, , Y., L. Li, C. H. Liang, Q. H. Liu, L. Li, and H. B. Wen, "Leafy EBG structures for ultra-wideband SSN suppression in power/ground plane pairs," Electronics Letters, Vol. 46, No. 11, 768-769, May 27, 2010.
doi:10.1049/el.2010.0758

4. Wu, T. L., J. Fan, F. de Paulis, C. D. Wang, A. Ciccomancini Scogna, and A. Orlandi, "Mitigation of noise coupling in mul-tilayer high-speed PCB: State of the art modeling methodology and EBG technology," Journal of Institute of Electronics, Infor-mation and Communication Engineers (IECE),, Vol. E93-B, No. 7, Jul. 2010..

5. De Paulis, , F., L. Raimondo, S. Connor, B. Archambeault, L. Raimondo, S. Connor, B. Archambeault, and , "Design of a common mode filter by using planar electromagnetic bandgap structures," IEEE Transactions on Advanced Packaging,, Vol. 33, No. 4, 994-1002, Nov. 2010.
doi:10.1109/TADVP.2010.2046167

6. Xu, , H.-J., Y.-H. Zhang, and Y. Fan, , "Analysis of the connection between K connector and microstrip with electromagnetic bandgap (EBG) structures," Progress In Electromagnetics Research, , Vol. 73, 239-247, 2007.
doi:10.2528/PIER07040801

7. Moghadasi, , S. M., A. R. Attari, and M. M. Mirsalehi, , "Compact and wideband 1-D mushroom-like EBG ¯lters," Progress In Electromagnetics Research,, Vol. 83, 323-333, 2008.
doi:10.2528/PIER08050101

8. Wang, , X., M. Zhang, and S.-J. Wang, , "Practicability analysis and application of PBG structures on cylindrical conformal microstrip antenna and array," Progress In Electromagnetics Research,, Vol. 115, 495-507, , 2011..

9. Kim, , S.-H., T. T. Nguyen, and J.-H. Jang, , "Reflection characteristics of 1-D EBG ground plane and its application to a planar dipole antenna," Progress In Electromagnetics Research,, Vol. 120, 51-66, 2011.

10. Pirhadi, , A., F. Keshmiri, M. Hakkak, and M. Tayarani, "Analysis and design of dual band high directive EBG resonator antenna using square loop FSS as superstrate layer," Progress In Electromagnetics Research, Vol. 70, 1-20, 2007.
doi:10.2528/PIER07010201

11. Wu, , T.-L., Y.-H. Lin, T.-K. Wang, C.-C. Wang, and S.-T. Chen, "Electromagnetic bandgap power/ground planes for wideband suppression of ground bounce noise and radiated emission in high-speed circuits ," IEEE Transactions on Microwave Theory and Techniques , Vol. 53, No. 9, 2935-2942, Sep. 2005.
doi:10.1109/TMTT.2005.854248

12. Wang, , T.-K., C.-Y. Hsieh, H.-H. Chuang, and T.-L. Wu, "Design and modeling of a stopband-enhanced EBG structure using ground surface perturbation lattice for power/ground noise suppression," IEEE Transactions on Microwave Theory and Techniques,, Vol. 57, No. 8, 2047-2054, Aug. 2009..
doi:10.1109/TMTT.2009.2025466

13. Wu, , T.-L., H.-H. Chuang, and T.-K. Wang, , "Overview of power integrity solutions on package and PCB: Decoupling and EBG isolation," IEEE Transactions on Electromagnetic Compatibility,, Vol. 52, No. 2, 346-356, May 2010.
doi:10.1109/TEMC.2009.2039575

14. Archambeault, , B., C. Brench, and S. Connor, , "Review of printed-circuit-board level EMI/EMC issues and tools," IEEE Transactions on Electromagnetic Compatibility, Vol. 52, , No. 2, 455-461, May 2010..
doi:10.1109/TEMC.2010.2044182

15. Bejan, , A., , "Constructal theory: From thermodynamic and geometric optimization to predicting shape in nature," Energy Conversion and Management,, Vol. 39, No. 16--18, 1705-1718, Nov. 1998..
doi:10.1016/S0196-8904(98)00054-5

16. Bejan, , A., V. Badescu, and A. de Vos, "Constructal theory of economics," Applied Energy, Vol. 67, No. 1--2, 37-60, Sep. 2000.
doi:10.1016/S0306-2619(00)00023-4

17. Kang, D.-H., S. Lorente, and A. Bejan, , "Constructal architecture for heating a stream by convection," International Journal of Heat and Mass Transfer, Vol. 53, No. 9--10, 2248-2255, Apr. 2010..
doi:10.1016/j.ijheatmasstransfer.2009.12.006

18. Da Silva, , A. K., A. Bejan, and , "Constructal multi-scale structure for maximal heat transfer density in natural convection," International Journal of Heat and Fluid Flow, Vol. 26, No. 1, 34-44, Feb. 2005.
doi:10.1016/j.ijheatfluidflow.2004.05.002

19. Senn, , S. M. and D. Poulikakos, "Laminar mixing, heat transfer and pressure drop in tree-like microchannel nets and their application for thermal management in polymer electrolyte fuel cells," Journal of Power Sources, Vol. 130, No. 1--2, 178-191, May 3 2004.
doi:10.1016/j.jpowsour.2003.12.025

20. Tescari, , S., N. Mazet, and P. Neveu, , "Constructal method to optimize solar thermochemical reactor design," Solar Energy, Vol. 84, No. 9, 1555-1566, Sep. 2010..
doi:10.1016/j.solener.2010.06.015

21. Sciacovelli, , A., V. Verda, and , "Entropy generation analysis in a monolithic-type solid oxide fuel cell (SOFC)," Energy,, Vol. 34, No. 7, 850-865, Jul. 2009.
doi:10.1016/j.energy.2009.03.007

22. Farzan, , S. M. D., A. Sankar, and , "A new miniaturized planar electromagnetic bandgap (EBG) structure with dual slits," 12th Signal Propagation on Interconnects, SPI 2008, 1-4, 2008.
doi:10.1109/SPI.2008.4558370

23. Kwon, J.-H., S.-I. Kwak, and D.-U. Sim, , "Localized EBG structure with DeCaps for ultra-wide suppression of power plane noise," PIERS Proceedings, , 1474-1477, Mar. 2011.

24. "IEEE Standard P1597, Standard for Validation of Computational Electromagnetics Computer Modeling and Simulation | Part 1, 2,", 2008.

25. Duffy, A. P., A. J. M. Martin, A. Orlandi, G. Antonini, T. M. Benson, and M. S. Woolfson, "Feature selective validation (FSV) for validation of computational electromagnetics (CEM). Part I | The FSV method," IEEE Transactions on Electromagnetic Compatibility, Vol. 48, No. 3, 449-459, Aug. 2006.
doi:10.1109/TEMC.2006.879358

26. Orlandi, , A., A. P. Duffy, B. Archambeault, G. Antonini, D. E. Coleby, and S. Connor, "Feature selective validation (FSV) for validation of computational electromagnetics (CEM). Part II | Assessment of FSV performance," IEEE Transactions on Electromagnetic Compatibility,, Vol. 48, No. 3, 460-467, Aug. 2006..
doi:10.1109/TEMC.2006.879360