Vol. 20
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-09-08
Breast Cancer Detection Based on Differential Ultrawideband Microwave Radar
By
Progress In Electromagnetics Research M, Vol. 20, 231-242, 2011
Abstract
Ultrawideband (UWB) microwave imaging is a promising emerging method for the detection of breast cancer. Fibroglandular tissue has been shown to significantly limit the effectiveness of UWB imaging algorithms, particularly in the case of premenopausal women who may present with more dense breast tissue. Rather than trying to create an image of the breast, this study proposes to compare the UWB backscattered signals from successive scans of a dielectrically heterogeneous breast, to identify the presence of cancerous tissue. The temporal changes between signals are processed using Support Vector Machines to determine if a cancerous growth has occurred during the time between scans. Detection rates are compared to the results from a previous study by the authors, where UWB backscatter signals from a single scan were processed for cancer detection.
Citation
Dallan Byrne, Martin O'Halloran, Martin Glavin, and Edward Jones, "Breast Cancer Detection Based on Differential Ultrawideband Microwave Radar," Progress In Electromagnetics Research M, Vol. 20, 231-242, 2011.
doi:10.2528/PIERM11080810
References

1. Jemal, A., R. Siegel, J. Xu, and E. Ward, "Cancer statistics," CA: A Cancer Journal for Clinicians, Vol. 60, No. 5, 277-300, 2010.
doi:10.3322/caac.20073

2. Hagness, S. C., A. Taflove, and J. E. Bridges, "Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed focus and antenna array sensors," IEEE Transactions on Biomedical Engineering, Vol. 45, 1470-1479, 1998.
doi:10.1109/10.730440

3. Guo, B., Y. Wang, J. Li, P. Stoica, and R. Wu, "Microwave imaging via adaptive beamforming methods for breast cancer detection," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 53-63, 2006.
doi:10.1163/156939306775777350

4. Flores-Tapia, D., M. O'Halloran, and S. Pistorius, "A bimodal reconstruction method for breast cancer imaging," Progress In Electromagnetics Research, Vol. 118, 461-486, 2011.
doi:10.2528/PIER11050408

5. Alshehri, S. A. and S. Khatun, "UWB imaging for breast cancer detection using neural network," Progress In Electromagnetics Research C, Vol. 7, 79-93, 2009.
doi:10.2528/PIERC09031202

6. Davis, S. K., E. J. Bond, X. Li, S. C. Hagness, and B. D. Van Veen, "Microwave imaging via space-time beamforming for the early detection of breast cancer: Beamformer design in the frequency domain," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 2, 357-381, 2003.
doi:10.1163/156939303322235860

7. O'Halloran, M., M. Glavin, and E. Jones, "Channel-ranked beamformer for the early detection of breast cancer," Progress In Electromagnetics Research, Vol. 103, 153-168, 2010.
doi:10.2528/PIER10030902

8. Byrne, D., M. O'Halloran, M. Glavin, and E. Jones, "Data independent radar beamforming algorithms for breast cancer detection," Progress In Electromagnetics Research, Vol. 107, 331-348, 2010.
doi:10.2528/PIER10061001

9. Byrne, D., M. O'Halloran, E. Jones, and M. Glavin, "Transmitter-grouping robust capon beamforming for breast cancer detection," Progress In Electromagnetic Research, Vol. 108, 401-416, 2010.
doi:10.2528/PIER10090205

10. Lazebnik, M., C. Zhu, G. M. Palmer, J. Harter, S. Sewall, N. Ramanujam, and S. C. Hagness, "Electromagnetic spectroscopy of normal breast tissue specimens obtained from reduction surgeries: Comparison of optical and microwave properties," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 10, 2444-2451, Oct. 2008.
doi:10.1109/TBME.2008.925700

11. Byrne, D., M. O'Halloran, M. Glavin, and E. Jones, "Support vector machine-based ultrawideband breast cancer detection system," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 13, 1807-1816, 2011.
doi:10.1163/156939311797454015

12. White, E., P. Velentgas, M. T. Mandelson, C. D. Lehman, J. G. Elmore, P. Porter, Y. Yasui, and S. H. Taplin, "Variation in mammographic breast density by time in menstrual cycle among women aged 40-49 years," Journal of the National Cancer Institute, Vol. 90, No. 12, 906-910, 1998.
doi:10.1093/jnci/90.12.906

13. Bennett, K. P. and C. Campbell, "Support vector machines: Hype or hallelujah?," SIGKDD Explorations Newsletter, Vol. 2, No. 1, 1-13, 2000.
doi:10.1145/380995.380999

14. Cortes, C. and V. Vapnik, "Support-vector networks," Machine Learning, 273-297, 1995.

15. Hsu, C.-W., C.-C. Chang, and C.-J. Lin, "A practical guide to support vector classification,", April, 2010, [Online], Available: http://www.csie.ntu.edu.tw/cjlin/papers.html..

16. Conceicao, R. C., M. O'Halloran, E. Jones, and M. Glavin, "Investigation of classifiers for early-stage breast cancer based on radar target signatures," Progress In Electromagnetics Research, Vol. 105, 295-311, 2010.
doi:10.2528/PIER10051904

17. O'Halloran, M., B. McGinley, R. C. Conceicao, F. Morgan, E. Jones, and M. Glavin, "Spiking neural networks for breast cancer classification in a dielectrically heterogeneous breast," Progress In Electromagnetics Research, Vol. 113, 413-428, 2011.

18. Hair, J., W. Black, B. Babin, R. Anderson, and R. Tatham, Multivariate Data Analysis, 6th Edition, Prentice Hall, Upper Saddle River, NJ, 2006.

19. Zastrow, E., S. K. Davis, M. Lazebnik, F. Kelcz, B. D. Van Veen, and S. Hagness, "Development of anatomically realistic numerical breast phantoms with accurate dielectric properties for modeling microwave interactions with the human breast," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 12, 2792-2800, Dec. 2008.
doi:10.1109/TBME.2008.2002130

20. Sacks, Z., D. Kingsland, R. Lee, and J. Lee, "A perfectly matched anisotropic absorber for use as an absorbing boundary condition," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 12, 1460-1463, 1995.
doi:10.1109/8.477075

21. Lazebnik, M., M. Okoniewski, J. H. Booske, and S. C. Hagness, "Highly accurate Debye models for normal and malignant breast tissue dielectric properties at microwave frequencies," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 12, 822-824, Dec. 2007, (fitting Debye to the Cole cole models)..
doi:10.1109/LMWC.2007.910465

22. Gabriel, C., S. Gabriel, and E. Corthout, "The dielectric properties of biological tissues: I. literature survey," Phys. Med. Biol., Vol. 41, No. 11, 2231-2249, Nov. 1996.
doi:10.1088/0031-9155/41/11/001

23. Shea, J. D., P. Kosmas, B. D. Van Veen, and S. C. Hagness, "Contrast-enhanced microwave imaging of breast tumors: A computational study using 3D realistic numerical phantoms," Inverse Problems, Vol. 26, No. 7, 1-22, 2010.
doi:10.1088/0266-5611/26/7/074009

24. Conceicao, R. C., M. O'Halloran, M. Glavin, and E. Jones, "Support vector machines for the classification of early-stage breast cancer based on radar target signatures," Progress In Electromagnetics Research B, Vol. 23, 311-327, 2010.
doi:10.2528/PIERB10062407

25. Davis, S. K., B. D. Van Veen, S. C. Hagness, and F. Kelcz, "Breast tumor characterization based on ultrawideband backscatter," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 1, 237-246, 2008.
doi:10.1109/TBME.2007.900564

26. Muinonen, K., "Introducing the gaussian shape hypothesis for asteroids and comets," Astronomy and Astrophysics, Vol. 332, 1087-1098, 1998.