1. Jemal, A., R. Siegel, J. Xu, and E. Ward, "Cancer statistics," CA: A Cancer Journal for Clinicians, Vol. 60, No. 5, 277-300, 2010.
doi:10.3322/caac.20073
2. Hagness, S. C., A. Taflove, and J. E. Bridges, "Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed focus and antenna array sensors," IEEE Transactions on Biomedical Engineering, Vol. 45, 1470-1479, 1998.
doi:10.1109/10.730440
3. Guo, B., Y. Wang, J. Li, P. Stoica, and R. Wu, "Microwave imaging via adaptive beamforming methods for breast cancer detection," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 53-63, 2006.
doi:10.1163/156939306775777350
4. Flores-Tapia, D., M. O'Halloran, and S. Pistorius, "A bimodal reconstruction method for breast cancer imaging," Progress In Electromagnetics Research, Vol. 118, 461-486, 2011.
doi:10.2528/PIER11050408
5. Alshehri, S. A. and S. Khatun, "UWB imaging for breast cancer detection using neural network," Progress In Electromagnetics Research C, Vol. 7, 79-93, 2009.
doi:10.2528/PIERC09031202
6. Davis, S. K., E. J. Bond, X. Li, S. C. Hagness, and B. D. Van Veen, "Microwave imaging via space-time beamforming for the early detection of breast cancer: Beamformer design in the frequency domain," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 2, 357-381, 2003.
doi:10.1163/156939303322235860
7. O'Halloran, M., M. Glavin, and E. Jones, "Channel-ranked beamformer for the early detection of breast cancer," Progress In Electromagnetics Research, Vol. 103, 153-168, 2010.
doi:10.2528/PIER10030902
8. Byrne, D., M. O'Halloran, M. Glavin, and E. Jones, "Data independent radar beamforming algorithms for breast cancer detection," Progress In Electromagnetics Research, Vol. 107, 331-348, 2010.
doi:10.2528/PIER10061001
9. Byrne, D., M. O'Halloran, E. Jones, and M. Glavin, "Transmitter-grouping robust capon beamforming for breast cancer detection," Progress In Electromagnetic Research, Vol. 108, 401-416, 2010.
doi:10.2528/PIER10090205
10. Lazebnik, M., C. Zhu, G. M. Palmer, J. Harter, S. Sewall, N. Ramanujam, and S. C. Hagness, "Electromagnetic spectroscopy of normal breast tissue specimens obtained from reduction surgeries: Comparison of optical and microwave properties," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 10, 2444-2451, Oct. 2008.
doi:10.1109/TBME.2008.925700
11. Byrne, D., M. O'Halloran, M. Glavin, and E. Jones, "Support vector machine-based ultrawideband breast cancer detection system," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 13, 1807-1816, 2011.
doi:10.1163/156939311797454015
12. White, E., P. Velentgas, M. T. Mandelson, C. D. Lehman, J. G. Elmore, P. Porter, Y. Yasui, and S. H. Taplin, "Variation in mammographic breast density by time in menstrual cycle among women aged 40-49 years," Journal of the National Cancer Institute, Vol. 90, No. 12, 906-910, 1998.
doi:10.1093/jnci/90.12.906
13. Bennett, K. P. and C. Campbell, "Support vector machines: Hype or hallelujah?," SIGKDD Explorations Newsletter, Vol. 2, No. 1, 1-13, 2000.
doi:10.1145/380995.380999
14. Cortes, C. and V. Vapnik, "Support-vector networks," Machine Learning, 273-297, 1995.
15. Hsu, C.-W., C.-C. Chang, and C.-J. Lin, "A practical guide to support vector classification,", April, 2010, [Online], Available: http://www.csie.ntu.edu.tw/cjlin/papers.html..
16. Conceicao, R. C., M. O'Halloran, E. Jones, and M. Glavin, "Investigation of classifiers for early-stage breast cancer based on radar target signatures," Progress In Electromagnetics Research, Vol. 105, 295-311, 2010.
doi:10.2528/PIER10051904
17. O'Halloran, M., B. McGinley, R. C. Conceicao, F. Morgan, E. Jones, and M. Glavin, "Spiking neural networks for breast cancer classification in a dielectrically heterogeneous breast," Progress In Electromagnetics Research, Vol. 113, 413-428, 2011.
18. Hair, J., W. Black, B. Babin, R. Anderson, and R. Tatham, Multivariate Data Analysis, 6th Edition, Prentice Hall, Upper Saddle River, NJ, 2006.
19. Zastrow, E., S. K. Davis, M. Lazebnik, F. Kelcz, B. D. Van Veen, and S. Hagness, "Development of anatomically realistic numerical breast phantoms with accurate dielectric properties for modeling microwave interactions with the human breast," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 12, 2792-2800, Dec. 2008.
doi:10.1109/TBME.2008.2002130
20. Sacks, Z., D. Kingsland, R. Lee, and J. Lee, "A perfectly matched anisotropic absorber for use as an absorbing boundary condition," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 12, 1460-1463, 1995.
doi:10.1109/8.477075
21. Lazebnik, M., M. Okoniewski, J. H. Booske, and S. C. Hagness, "Highly accurate Debye models for normal and malignant breast tissue dielectric properties at microwave frequencies," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 12, 822-824, Dec. 2007, (fitting Debye to the Cole cole models)..
doi:10.1109/LMWC.2007.910465
22. Gabriel, C., S. Gabriel, and E. Corthout, "The dielectric properties of biological tissues: I. literature survey," Phys. Med. Biol., Vol. 41, No. 11, 2231-2249, Nov. 1996.
doi:10.1088/0031-9155/41/11/001
23. Shea, J. D., P. Kosmas, B. D. Van Veen, and S. C. Hagness, "Contrast-enhanced microwave imaging of breast tumors: A computational study using 3D realistic numerical phantoms," Inverse Problems, Vol. 26, No. 7, 1-22, 2010.
doi:10.1088/0266-5611/26/7/074009
24. Conceicao, R. C., M. O'Halloran, M. Glavin, and E. Jones, "Support vector machines for the classification of early-stage breast cancer based on radar target signatures," Progress In Electromagnetics Research B, Vol. 23, 311-327, 2010.
doi:10.2528/PIERB10062407
25. Davis, S. K., B. D. Van Veen, S. C. Hagness, and F. Kelcz, "Breast tumor characterization based on ultrawideband backscatter," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 1, 237-246, 2008.
doi:10.1109/TBME.2007.900564
26. Muinonen, K., "Introducing the gaussian shape hypothesis for asteroids and comets," Astronomy and Astrophysics, Vol. 332, 1087-1098, 1998.