Vol. 20
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-09-02
Caustic Region Fields of a 3D Cassegrain System Placed in BI-Isotropic Homogeneous Chiral Medium
By
Progress In Electromagnetics Research M, Vol. 20, 191-205, 2011
Abstract
This paper presents the electromagnetic field expressions for 3D cassegrain system embedded in a bi-isotropic chiral medium. Mathematical formulation of Maslov is used to find the field expressions in the focal region. Effect of chirality (both the week and strong) on focal region fields is analyzed. It is seen that when the chirality effect is weak (i.e., κ < 1), chiral medium will support positive phase velocity (PPV) for both the left circularly polarized (LCP) and the right circularly polarized (RCP) modes. However for strong chiral medium (i.e., κ > 1), one mode travels with PPV and the other mode travels with negative phase velocity (NPV). The line plots are given to show the behavior of fields in the focal plane of 3D cassegrain system by changing the chirality parameter (κ).
Citation
Arshad, Muhammad Qasim Mehmood, and Muhammad Junaid Mughal, "Caustic Region Fields of a 3D Cassegrain System Placed in BI-Isotropic Homogeneous Chiral Medium," Progress In Electromagnetics Research M, Vol. 20, 191-205, 2011.
doi:10.2528/PIERM11080805
References

1. Zouhdi, S., A. Sihvola, and A. P. Vinogradov, Metamaterials and Plasmonics: Fundamentals, Modelling, Applications, Springer, 2008.

2. Mehmood, M. Q., M. J. Mughal, and T. Rahim, "Focal region fields of Gregorian system placed in homogeneous chiral medium," Progress In Electromagnetics Research M, Vol. 11, 241-256, 2010.
doi:10.2528/PIERM10031104

3. Mehmood, M. Q. and M. J. Mughal, "Analysis of focal region fields of PEMC Gregorian system embeded in homogeneous chiral medium," Progress In Electromagnetics Research Letters, Vol. 18, 155-163, 2010.
doi:10.2528/PIERL10100301

4. Mehmood, M. Q., M. J. Mughal, and T. Rahim, "Focal region fields of Cassegrain system placed in homogeneous chiral medium," Progress In Electromagnetics Research B, Vol. 21, 329-346, 2010.

5. Dong, W. T., L. Gao, and C. W. Qiu, "Goos-Hanchen shift at the surface of chiral negative refractive media," Progress In Electromagnetics Research, Vol. 90, 255-268, 2009.
doi:10.2528/PIER08122002

6. Qiu, C. W., H. Y. Yao, L. W. Li, S. Zouhdi, and T. S. Yeo, "Backward waves in magnetoelectrically chiral media: Propagation, impedance, and negative refraction," Physical Review B, Vol. 75, 155120, 2007.

7. Maslov, V. P., "Perturbation theory and asymptotic methods,", Izdat. Moskov. Gos. Univ., Moscow, 1965 (in Russian)..

8. Maslov, V. P. and V. E. Nazaikinski, "Asymptotics of operator and pseudo-differential equations," Consultants Bureau, N.Y., 1988.

9. Lakhtakia, A., V. V. Varadan, and V. K. Varadan, "What happens to plane waves at the planar interfaces of mirror conjugated chiral media," Journal of the Optical Society of America A: Optics, Image Science, and Vision, Vol. 6, No. 1, 2326, January 1989.

10. Rahim, T., M. J. Mughal, Q. A. Naqvi, and M. Faryad, "Paraboloidal reflector in chiral medium supporting simultaneously positive phase velocity and negative phase velocity," Progress In Electromagnetics Research, Vol. 92, 223-234, 2009.
doi:10.2528/PIER09031809

11. Ghaffar, A., Q. A. Naqvi, and K. Hongo, "Analysis of the fields in three dimensional Cassegrain system," Progress In Electromagnetics Research, Vol. 72, 215-240, 2007.
doi:10.2528/PIER07031602

12. Rahim, T., M. J. Mughal, M. Faryad, and Q. A. Naqvi, "Fields around the focal region of a paraboloidal reflector placed in isotropic chiral medium," Progress In Electromagnetics Research B, Vol. 15, 57-76, 2009.
doi:10.2528/PIERB09031002

13. Rahim, T., M. J. Mughal, M. Faryad, and Q. A. Naqvi, "Focal region field of a paraboloidal reflector coated with isotropic chiral medium," Progress In Electromagnetics Research, Vol. 94, 351-366, 2009.
doi:10.2528/PIER09032703

14. Qiu, C. W., N. Burokur, S. Zouhdi, and L. W. Li, "Chiral nihility effects on energy flow in chiral materials," J. Opt. Soc. Am. A, Vol. 25, No. 1, 55-63, 2008.
doi:10.1364/JOSAA.25.000055

15. Tuz, V. R. and C. W. Qiu, "Semi-infinite chiral nihility photonics: Parametric dependence, wave tunneling and rejection," Progress In Electromagnetics Research, Vol. 103, 139-152, 2010.
doi:10.2528/PIER10030706

16. Dong, J. F., "Surface wave modes in chiral negative refraction grounded slab waveguides," Progress In Electromagnetics Research, Vol. 95, 153-166, 2009.
doi:10.2528/PIER09062604

17. Faryad, M. and Q. A. Naqvi, "High frequency expression for the field in the caustic region of cylindrical reflector placed in chiral medium," Progress In Electromagnetics Research, Vol. 76, 153-182, 2007.
doi:10.2528/PIER07070401

18. Faryad, M. and Q. A. Naqvi, "Cylindrical reflector in chiral medium supporting simultaneously positive phase velocity and negative phase velocity," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 4, 563-572, 2008.
doi:10.1163/156939308784150344

19. Ghaffar, A., Q. A. Naqvi, and K. Hongo, "Analysis of the fields in three dimensional Cassegrain system," Progress In Electromagnetics Research, Vol. 72, 215-240, 2007.
doi:10.2528/PIER07031602