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Abstract—This paper presents the electromagnetic field expressions
for 3D cassegrain system embedded in a bi-isotropic chiral medium.
Mathematical formulation of Maslov is used to find the field expressions
in the focal region. Effect of chirality (both the week and strong)
on focal region fields is analyzed. It is seen that when the chirality
effect is weak (i.e., κ < 1), chiral medium will support positive phase
velocity (PPV) for both the left circularly polarized (LCP) and the
right circularly polarized (RCP) modes. However for strong chiral
medium (i.e., κ > 1), one mode travels with PPV and the other mode
travels with negative phase velocity (NPV). The line plots are given to
show the behavior of fields in the focal plane of 3D cassegrain system
by changing the chirality parameter (κ).

1. INTRODUCTION

An object is chiral if it can not be superimposed on its mirror image
neither by translation nor by rotation. A chiral object has the property
of handedness, it must be either left or right handed object. Interaction
between the electromagnetic wave and the chiral objects results in
rotation of the polarization of wave to the right or left depending on
handedness of the object. Uniform distribution and random orientation
of such handed objects form a homogeneous composite medium, which
is known as a chiral medium [1]. Different reflectors are placed in chiral
medium due to its unique characteristics over an ordinary medium like
polarization control, impedance matching and cross coupling of electric
and magnetic fields. Desirable values of the wave impedance and the
propagation constants can be obtained by changing the permittivity
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(ε), permeability (µ) and chirality parameter (κ) of the chiral media.
Hence, a chiral medium gives more freedom to adjust (decrease or
increase) the reflection and transmission, because it can be controlled
by variation of three parameters (ε, µ and κ) instead of two parameters
(ε and µ) as in the case of achiral medium [2–4]. Moreover, a
negative refractive index can be realized in a magnetoelectrically chiral
medium with few restrictions. When the chirality parameter is greater
than the square root of the product of permittivity and permeability,
the backward wave will occur at one of the two circularly polarized
eigenwaves [5, 6]. Realizing the unique characteristics of chiral medium,
we have embedded the 3D Cassegrain system in chiral medium in this
problem. Two different cases are considered depending upon the effect
of chirality parameter on the wave propagation in chiral media. In the
first case, chiral medium supports PPV for both the LCP and RCP
modes. In the second case, chiral medium supporting PPV for one
mode and NPV for the other mode is taken into account. Maslov’s
method is used to study the fields in the focal region. It combines the
simplicity of asymptotic ray theory and the generality of the Fourier
transform method [7, 8]. Maslov’s method has been utilized by many
authors to study different focusing systems in the caustic region [10–
19]. Focusing system in this problem is three dimensional Cassegrain
system which is embedded inside a chiral medium. Division of the
present paper is as under:
In Section 2, reflection of plane wave from perfect electric conductor
(PEC) placed in chiral medium is discussed. Section 3 is about the
receiving characteristics of three dimensional Cassegrain system placed
in chiral medium for both κ < 1 and κ > 1. In Section 4, results and
discussions are given and Section 5 is about the conclusion.

2. REFLECTION OF PLANE WAVE FROM PERFECT
ELECTRIC CONDUCTOR (PEC) PLACED IN CHIRAL
MEDIUM

Reflection phenomena of plane waves from PEC plane placed in chiral
medium is discussed in [9]. We recapitulate it here to present it in
a form suitable for our present work. Consider reflection of RCP
wave from PEC plane lying along xz-plane as shown in Figure 1. An
RCP wave traveling with phase velocity ω/kn2 and unit amplitude
is incident on the plane making angle α with z-axis. Reflected
wave is composed of two waves with opposite handedness. An LCP
wave is reflected making an angle α1 = [sin−1(n2/n1 sinα)] and with
amplitude 2 cosα/(cosα + cosα1). The phase velocity of LCP wave
is ω/kn1. An RCP wave is reflected making angle α and amplitude
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Figure 1. Reflection of RCP wave from PEC plane [3].

Figure 2. Reflection of LCP wave from PEC plane [3].

(cosα − cosα1)/(cosα + cosα1). If we take κ < 1, then n1 > n2

and α1 < α, i.e., LCP wave bends towards normal, because it is
traveling slower than RCP wave. For κ > 1, α1 is negative and
the wave is reflected in the wrong way, it may be called negative
reflection(shown as gray in Figure 1). This means that for κ > 1,
LCP reflected wave sees the chiral medium as NPV medium. Similarly
when an LCP wave with unit amplitude is incident on PEC plane
making angle α with z-axis, as shown in Figure 2, we get two reflected
waves of opposite handedness. An RCP wave is reflected at angle
α2 = [sin−1(n1/n2 sinα)] with amplitude 2 cosα/(cosα + cos α2) and
an LCP wave at angle α and amplitude (cosα−cosα2)/(cosα+cosα2).
If we take κ < 1, then n1 > n2 and α2 > α. If κ = 0 then only normal
reflection take place, and if κ increases the difference between the angle
α and α1, α2 increases. For κ > 1, we have negative reflection for RCP
reflected wave (shown as gray in Figure 2) [17].

3. GEOMETRICAL OPTICS FIELDS OF THREE
DIMENSIONAL CASSEGRAIN SYSTEM PLACED IN
CHIRAL MEDIUM

Cassegrain system consists of two reflectors, one is paraboloidal main
reflector and other is hyperboloidal subreflector as shown in Figure 3.
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In this problem we are considering the receiving characteristics of 3D
Cassegrain system. When both RCP and LCP waves are incident on
the main paraboloidal reflector, it cause four reflected waves designated
as LL, RR, LR and RL [17]. These four waves are then incident on
the secondary hyperboloidal subreflector and will cause eight reflected
waves designated as LLL, RRR, LLR, RRL, RLR, RLL, LRR and LRL.
Only four waves(LLL, RRR, LLR, RRL) will converge in the focal
region while other four waves (RLR, RLL, LRR, LRL) will diverge. In
this paper we are considering only four converging rays after reflection
from hyperboloidal subreflector as shown in Figure 4. For κ > 1,
n1 = 1

1−κ < 0 and n2 = 1
1+κ > 0, so LCP wave travels with NPV

and RCP wave with PPV. For κ < −1 RCP wave travels with NPV
and LCP wave with PPV. We have depicted here the case of κ > 1
only because for κ < −1, we can get the solutions from κ > 1 by
interchanging the role of LCP and RCP modes [18]. Cassegrain system
for κ > 1 is shown in Figure 5. LLL and RRR rays are reflected at the
same angle while RRL and LLR rays have different response. It can be
seen that only two rays (LLL and RRR) are contributing to the focus,
while RRL and LLR rays are divergent. Equations for paraboloidal
and hyperboloidal reflector of Cassegrain system are given by

ζ1 =
ρ2
1

4f
− f + c, ζ2 =

a

b

[
ρ2
2 + b2

]1/2
, c2 = a2 + b2 (1)

where
c2 = a2 + b2, ρ2

1 = ξ2
1 + η2

1, ρ2
2 = ξ2

2 + η2
2, aR2 = cζ2 − a2 (2)

Figure 3. Three dimensional Cassegrain system.
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Figure 4. 3D Cassegrain system in chiral medium for κ < 1.

Figure 5. 3D cassegrain system in chiral medium for κ > 1.

and (ξ1, η1, ζ1) and (ξ2, η2, ζ2) are the cartesian coordinates of the
points on the paraboloidal and hyperboloidal reflectors, respectively.
Unit vectors normal to the paraboloidal and hyperboloidal surfaces are
as following, respectively

N1 = sin α cosβax + sinα sinβay − cosαaz (3a)

N2 = − sinψ cosβax − sinψ sinβay + cos ψaz (3b)
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where

sinα =
ρ1√

ρ2
1 + 4f2

, cosα =
2f√

ρ2
1 + 4f2

, tanβ =
η1

ξ1
(4a)

sinψ = − aρ2

b
√

R1R2
, cosψ =

bζ2

a
√

R1R2
, tanβ =

η2

ξ2
(4b)

while R1 and R2 are the distances from the point (ξ2, η2, ζ2) on the
hyperboloidal reflector to the caustic points z = c and z = −c,
respectively. Incident waves on main paraboloidal reflector having unit
amplitude are given by.

QL = exp(jkn1z), QR = exp(jkn2z) (5)
Consider the case of normal incidence such that these waves are
incident at an angle α with surface normal N1 as shown in Figure 3
to Figure 5. The reflected wave vectors will be LL, RR, RL and LR as
given in [12]. We will take two, RR and LL, waves that will incident on
hyperboloidal subreflector and converge as well after reflection. The
wave vectors of these (LLL, RRR, RRL and LLR) reflected waves by
the hyperboloidal subreflector are given as

pLLL = −n1 sin(2α− 2ψ) cos βax − n1 sin(2α− 2ψ) sinβay

− n1 cos(2α− 2ψ)az (6a)

pRRR = −n2 sin(2α− 2ψ) cos βax − n2 sin(2α− 2ψ) sinβay

− n2 cos(2α− 2ψ)az (6b)

pRRL = −n1 sin(γ1 − ψ) cosβax − n1 sin(γ1 − ψ) sinβay

− n1 cos(γ1 − ψ)az (6c)

pLLR = −n2 sin(γ2 − ψ) cosβax − n2 sin(γ2 − ψ) sinβay

− n2 cos(γ2 − ψ)az (6d)
The initial amplitudes for these four reflected rays are

A0LLL =
(

cosα− cosα2

cosα + cosα2

)(
cos γ − cos γ2

cos γ + cos γ2

)
(7a)

A0RRR =
(

cosα− cosα1

cosα + cosα1

)(
cos γ − cos γ1

cos γ + cos γ1

)
(7b)

A0RRL =
(

cosα− cosα1

cosα + cosα1

)(
2 cos γ

cos γ + cos γ1

)
(7c)

A0LLR =
(

cosα− cosα2

cosα + cosα2

)(
2 cos γ

cos γ + cos γ2

)
(7d)
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And the corresponding initial phases are

S0LLL = −n1ζ1 = n1

[
2f

cos 2α

1 + cos 2α
− c

]
(8a)

S0RRR = −n2ζ1 = n2

[
2f

cos 2α

1 + cos 2α
− c

]
(8b)

S0RRL = −n2ζ1 = n2

[
2f

cos 2α

1 + cos 2α
− c

]
(8c)

S0LLR = −n1ζ1 = n1

[
2f

cos 2α

1 + cos 2α
− c

]
(8d)

In the above equations R1 and R2 are the distances from the
point (ξ2, η2, ζ2) to the focal points z = −c and z = c, respectively
with c2 = a2 + b2. The cartesian coordinates of the rays reflected by
the hyperboloidal subreflector are given by.

xLLL = ξ2 + PxLLLt, xRRR = ξ2 + PxRRRt (9a)

xRRL = ξ2 + PxRRLt, xLLR = ξ2 + PxLLRt (9b)

yLLL = η2 + PyLLLt, yRRR = η2 + PyRRRt (9c)

yRRL = η2 + PyRRLt, yLLR = η2 + PyLLRt (9d)

zLLL = ζ2 + PzLLLt, zRRR = ζ2 + PzRRRt (9e)

zRRL = ζ2 + PzRRLt, zLLR = ζ2 + PzLLRt (9f)

where

t1 =
√

(ξ2 − ξ1)2 + (η2 − η1)2 + (ζ2 − ζ1)2 (10a)

t =
√

(x− ξ2)2 + (y − η2)2 + (z − ζ2)2 (10b)

The Jacobian transformation of reflected rays can be found using[
J(t) = D(t)

D(0

]
. The GO field for each ray can now be written as

U(r)LLL = A0LLL [JLLL]−1/2 exp
[−jk

(
S0LLL + n2

1t + n1t1
)]

(11a)

U(r)RRR = A0RRR [JRRR]−1/2 exp
[−jk

(
S0RRR + n2

2t + n2t1
)]

(11b)

U(r)RRL = A0RRL [JRRL]−1/2 exp
[−jk

(
S0RRL + n2

1t + n1t1
)]

(11c)

U(r)LLR = A0LLR [JLLR]−1/2 exp
[−jk

(
S0LLR + n2

2t + n2t1
)]

(11d)
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where A0 and S0 are the initial amplitudes and phases respectively.
Their expressions are given in Eqs. (7)–(14). The phase functions are
given by

SLLL = S0LLL + n1t1 + n2
1t− xLLLPxLLL − yLLLPyLLL

+ xPxLLL + yPyLLL (12a)

SRRR = S0RRR + n2t1 + n2
2t− xRRRPxRRR − yRRRPyRRR

+ xPxRRR + yPyRRR (12b)

SRRL = S0RRL + n1t1 + n2
1t− xRRLPxRRL − yRRLPyRRL

+ xPxRRL + yPyRRL (12c)

SLLR = S0LLR + n2t1 + n2
2t− xLLRPxLLR − yLLRPyLLR

+ xPxLLR + yPyLLR (12d)

In these phase functions S0 and t1 are given above. While the extra
terms are given by

SexLLL = n2
1t− xLLLPxLLL − yLLLPyLLL + xPxLLL + yPyLLL

= n2
1t− (ξ2 + PxLLLt)PxLLL + (η2 + PyLLLt)PyLLL

+xPxLLL + yPyLLL

= (PzLLL)2 t + (x− ξ2)PxLLL + (y − η2)PyLLL

= (x− ξ2)PxLLL + (y − η2)PyLLL + (z − ζ2)PzLLL

= −n1x sin(2α− 2ψ) cos β − n1y sin(2α− 2ψ) sin β

−n1z cos(2α− 2ψ) + n1ξ2 sin(2α− 2ψ) cosβ

+n1η2 sin(2α− 2ψ) sin β + n1ζ2 cos(2α− 2ψ) (13)

Similarly

SexRRR = −n2x sin(2α− 2ψ) cos β − n2y sin(2α− 2ψ) sin β

−n2z cos(2α− 2ψ) + n2ξ2 sin(2α− 2ψ) cosβ

+n2η2 sin(2α− 2ψ) sin β + n2ζ2 cos(2α− 2ψ) (14)

SexRRL = −n1x sin(γ1 − ψ) cos β − n1y sin(γ1 − ψ) sin β

−n1z cos(γ1 − ψ) + n1ξ2 sin(γ1 − ψ) cos β

+n1η2 sin(γ1 − ψ) sinβ + n1ζ2 cos(γ1 − ψ) (15)
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SexLLR = −n2x sin(γ2 − ψ) cosβ − n2y sin(γ2 − ψ) sinβ

−n2z cos(γ2 − ψ) + n2ξ2 sin(γ2 − ψ) cos β

+n2η2 sin(γ2 − ψ) sin β + ζ2 cos(γ2 − ψ) (16)

Since GO becomes infinite at caustic region, so we found approximate
field at the caustic by Maslov’s method. To calculate the field at caustic
region we need expression

[
J(t)∂(Px,Py)

∂(x,y)

]
for all four rays, reflected from

hyperboloidal subreflector, which are given below.
[
J(t)LLL

∂(PxLLL, PyLLL

∂(x, y)

]
=

n1Γζ sin(2α−2ψ) cos2(2α−2ψ) cos(ψ)
R2

2 cos2(α) cos(2α−ψ)ΓξΓη

(17a)[
J(t)RRR

∂(PxRRR, PyRRR

∂(x, y)

]
=

n2Γζ sin(2α−2ψ) cos2(2α−2ψ) cos(ψ)
R2

2 cos2(α) cos(2α−ψ)ΓξΓη

(17b)[
J(t)LLR

∂(PxLLR, PyLLR

∂(x, y)

]
=

n2 sin(γ2−ψ) cos2(γ2−ψ) cos(ψ)
R2

2 cos2(α) cos(γ2)ΓξΓη

×
[

n1 cos(γ)√
n2

2−n2
1 cos(γ)

[1−Γζ1 ]−Γζ1

]

(17c)[
J(t)RRL

∂(PxRRL, PyRRL

∂(x, y)

]
=

n1 sin(γ1−ψ) cos2(γ1−ψ) cos(ψ)
R2

2 cos2(α) cos(γ1)ΓξΓη

×
[

n2 cos(γ)√
n2

1−n2
2 cos(γ)

[1−Γζ1 ]−Γζ1

]

(17d)

where

Γζ = 1− 2ac

R1(R2 + a)
[
Γξ cos2 β + Γη sin2 β

]
(18a)

Γξ =
1 + tan(2α) tan(α) cos2(β)
1 + tan(2α) tan(ψ) cos2(β)

(18b)

Γη =
1 + tan(2α) tan(α) sin2(β)
1 + tan(2α) tan(ψ) sin2(β)

(18c)

Γζ1 =
ac

R1(R2 + a)
[
Γξ cos2 β + Γη sin2 β

]
(18d)
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After substituting all the required parameters and simplifying
them we will get the following final expressions at caustic region.

U(r)LLL =
jk

2π

[∫ A2

A1

+
∫ −A1

−A2

] ∫ 2π

0
A0LLL(ξ)

R3
2 cos3(α) sin(4α)

f2

×
[
n3

1 sin(2α− 2ψ) cos(2α− ψ)
2 cosψ

ΓξΓηΓζ

]1/2

× exp[−jk{S0LLL + n1t1 + SexLLL}]d(α)d(β) (19a)

U(r)RRR =
jk

2π

[∫ A2

A1

+
∫ −A1

−A2

] ∫ 2π

0
A0RRR(ξ)

R3
2 cos3(α) sin(4α)

f2

×
[
n3

2 sin(2α− 2ψ) cos(2α− ψ)
2 cosψ

ΓξΓηΓζ

]1/2

× exp[−jk{S0RRR + n2t1 + SexRRR}]d(α)d(β) (19b)

U(r)RRL =
jk

2π

[∫ A2

A1

+
∫ −A2

−A1

] ∫ 2π

0
A0RRL(ξ)

R3
2 cos3(α) sin(4α)Γζ

2f2

×
[
n3

1 sin(γ1 − ψ) cos(γ1)ΓξΓη

cos(ψ)

]1/2

×

 n2 cos(γ)Γζ1√

n2
1 − n2

2 sin2(γ)
+ Γζ1−1



−1/2

× exp[−jk{S0RRL + n1t1 + SexRRL}]d(α)d(β) (19c)

U(r)LLR =
jk

2π

[∫ A2

A1

+
∫ −A2

−A1

] ∫ 2π

0
A0LLR(ξ)

R3
2 cos3(α) sin(4α)Γζ

2f2

×
[
n3

2 sin(γ2 − ψ) cos(γ2)ΓξΓη

cos(ψ)

]1/2

×

 n1 cos(γ)Γζ1√

n2
2 − n2

1 sin2(γ)
+ Γζ1−1



−1/2

× exp[−jk{SLLR + n2t1 + SexLLR}]d(α)d(β) (19d)

4. RESULTS AND DISCUSSIONS

Field pattern around the caustic of a Cassegrain system are determined
using Eqs. (19a)–(19d) by using Maslov’s method. Values for different
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parameters of Cassegrain system are: kf = 25, ka = 8, kb = 9, kd = 6,
kD = 18. Limits of integration for Eqs. (19a)–(19d) are selected using
the following relations [19].

A1 = 2 tan−1

(
D

2f

)
, A2 = tan−1

(
d

2c

)
(20)

Equations of caustic for LLL and RRR rays are given by Eq. (19a) and
Eq. (19b). These are similar as in the case of ordinary medium [19].
LLL and RRR rays coincide for all values of κ. As the value of κ
increases, magnitude of the field at caustic increases. This behavior is
depicted in Figures 6 and 7. For κ = 0, n1 = n2 = 1 and

ULLL = URRR = 0 (21)

Figure 6. |ULLL| of 3D Cassegarin system at kx = 0, ky = 0, for
κ = 0, 0.001, 0.005, 0.01.

Figure 7. |URRR| of 3D Cassegrain system at kx = 0, ky = 0, for
κ = 0, 0.001, 0.005, 0.01.
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Figure 8. |URRL| of 3D cassegrain system at kx = 0, ky = 0, for
κ = 0, 0.001, 0.005, 0.01.

Figure 9. |ULLR| of 3D Cassegrain system at kx = 0, ky = 0, for
κ = 0, 0.001, 0.005, 0.01.

Equations of caustic for RRL and LLR rays are given by Eq. (19c) and
Eq. (19d). As the value of κ increases, gap between the focal points
of RRL and LLR rays increases as shown in Figures 8 and 9. It is
due to the fact that enlarging the value of chirality parameter causes
reduction in the phase velocity of LLR ray, i.e., it slows down. While
by increasing the value of κ, phase velocity of RRL ray increases. This
is why the gap between RRL and LLR rays continues to increases with
increase in the value of κ as shown in Figure 9. For κ = 0, n1 = n2 = 1
and

URRL = ULLR = 0 (22)

Equations (21) and (22) explains that for zero chirality parameter,
α1 = α and α2 = α, i.e., LL and RR rays reduce to zero amplitude.
Since LLL, RRR, LLR and RRL rays are reflected as the result of
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Figure 10. |ULLL| of 3D Cassegrain system at kx = 0, ky = 0, for
κ = 1.2, 1.4, 1.6.

Figure 11. |URRR| of 3D Cassegrain system at kx = 0, ky = 0, for
κ = 1.2, 1.4, 1.6.

incidence of LL and RR rays on hyperboloidal reflector. So it is quite
obvious that if LL and RR rays vanishes at κ = 0 then LLL, RRR,
RRL and LLR rays also have zero amplitude for zero chirality as shown
in Figures 6–11. While other four rays LRL, LRR, RLR, RRL, caused
due the incidence of RL and LR will be like ordinary medium waves [19]
for zero chirality case. Due to these properties, it can be advantageous
in RF absorber and reflection controlling applications.

Plots of LLL and RRR rays for κ > 1 are given in Figures 10 and
11, respectively. In this case LCP wave is traveling with NPV and
RCP with PPV. Due to this, LLL and RRR rays are located at same
location as in the case of ordinary medium, while RRL and LLR waves
diverge out and do not form a real focus. Hence for κ > 1, negative
reflections occur which can be applicable where invisibility is required.
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5. CONCLUSION

It is found that excitation of a Cassegrain system placed in chiral
medium by the plane wave yield eight rays four of them converge and
their field expressions are determined in this paper. LLL and RRR,
rays are focused at the same location as if the system is placed in an
ordinary medium [19]. It is also found that for weak chirality parameter
case other two rays, LLR and RRL, are focused on the opposite sides of
the caustic region locating in an ordinary medium [19]. As κ increases,
gap between the focal points of LLR and RRL rays increases. For NPV
case, it is observed that caustic for LLL and RRR rays does not change,
while the caustics of LLR and RRL rays disappear because these two
rays are now diverging.

REFERENCES

1. Zouhdi, S., A. Sihvola, and A. P. Vinogradov, Metamaterials and
Plasmonics: Fundamentals, Modelling, Applications, Springer,
2008.

2. Mehmood, M. Q., M. J. Mughal, and T. Rahim, “Focal region
fields of Gregorian system placed in homogeneous chiral medium,”
Progress In Electromagnetics Research M, Vol. 11, 241–256, 2010.

3. Mehmood, M. Q. and M. J. Mughal, “Analysis of focal region
fields of PEMC Gregorian system embeded in homogeneous chiral
medium,” Progress In Electromagnetics Research Letters, Vol. 18,
155–163, 2010.

4. Mehmood, M. Q., M. J. Mughal, and T. Rahim, “Focal
region fields of Cassegrain system placed in homogeneous chiral
medium,” Progress In Electromagnetics Research B, Vol. 21, 329–
346, 2010.

5. Dong, W. T., L. Gao, and C. W. Qiu, “Goos-Hänchen shift
at the surface of chiral negative refractive media,” Progress In
Electromagnetics Research, Vol. 90, 255–268, 2009.

6. Qiu, C. W., H. Y. Yao, L. W. Li, S. Zouhdi, and T. S. Yeo,
“Backward waves in magnetoelectrically chiral media: Propaga-
tion, impedance, and negative refraction,” Physical Review B,
Vol. 75, 155120, 2007.

7. Maslov, V. P., “Perturbation theory and asymptotic methods,”
Izdat. Moskov. Gos. Univ., Moscow, 1965 (in Russian).

8. Maslov, V. P. and V. E. Nazaikinski, “Asymptotics of operator
and pseudo-differential equations,” Consultants Bureau, N.Y.,
1988.



Progress In Electromagnetics Research M, Vol. 20, 2011 205

9. Lakhtakia, A., V. V. Varadan, and V. K. Varadan, “What happens
to plane waves at the planar interfaces of mirror conjugated chiral
media,” Journal of the Optical Society of America A: Optics,
Image Science, and Vision, Vol. 6, No. 1, 2326, January 1989.

10. Rahim, T., M. J. Mughal, Q. A. Naqvi, and M. Faryad,
“Paraboloidal reflector in chiral medium supporting simulta-
neously positive phase velocity and negative phase velocity,”
Progress In Electromagnetics Research, Vol. 92, 223–234, 2009.

11. Ghaffar, A., Q. A. Naqvi, and K. Hongo, “Analysis of the
fields in three dimensional Cassegrain system,” Progress In
Electromagnetics Research, Vol. 72, 215–240, 2007.

12. Rahim, T., M. J. Mughal, M. Faryad, and Q. A. Naqvi, “Fields
around the focal region of a paraboloidal reflector placed in
isotropic chiral medium,” Progress In Electromagnetics Research
B, Vol. 15, 57–76, 2009.

13. Rahim, T., M. J. Mughal, M. Faryad, and Q. A. Naqvi, “Focal
region field of a paraboloidal reflector coated with isotropic chiral
medium,” Progress In Electromagnetics Research, Vol. 94, 351–
366, 2009.

14. Qiu, C. W., N. Burokur, S. Zouhdi, and L. W. Li, “Chiral nihility
effects on energy flow in chiral materials,” J. Opt. Soc. Am. A,
Vol. 25, No. 1, 55–63, 2008.

15. Tuz, V. R. and C. W. Qiu, “Semi-infinite chiral nihility photonics:
Parametric dependence, wave tunneling and rejection,” Progress
In Electromagnetics Research, Vol. 103, 139–152, 2010.

16. Dong, J. F., “Surface wave modes in chiral negative refrac-
tion grounded slab waveguides,” Progress In Electromagnetics Re-
search, Vol. 95, 153–166, 2009.

17. Faryad, M. and Q. A. Naqvi, “High frequency expression for the
field in the caustic region of cylindrical reflector placed in chiral
medium,” Progress In Electromagnetics Research, Vol. 76, 153–
182, 2007.

18. Faryad, M. and Q. A. Naqvi, “Cylindrical reflector in chiral
medium supporting simultaneously positive phase velocity and
negative phase velocity,” Journal of Electromagnetic Waves and
Applications, Vol. 22, No. 4, 563–572, 2008.

19. Ghaffar, A., Q. A. Naqvi, and K. Hongo, “Analysis of the
fields in three dimensional Cassegrain system,” Progress In
Electromagnetics Research, Vol. 72, 215–240, 2007.


