Vol. 36
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-11-16
Assessment of L-Band SAR Data at Different Polarization Combinations for Crop and Other Landuse Classification
By
Progress In Electromagnetics Research B, Vol. 36, 303-321, 2012
Abstract
In the present study, evaluation of L-band SAR data at different polarization combinations in linear, circular as well as hybrid polarimetric imaging modes for crop and other landuse classifications has been carried out. Full-polarimetric radar data contains all the scattering information for any arbitrary polarization state, hence data of any combination of transmit and receive polarizations can be synthesized, mathematically from full-polarimetric data. Circular and various modes of hybrid polarimetric data, (where the transmitter polarization is either circular or orientated at 45°, called π/4 and the receivers are at horizontal and vertical polarizations with respect to the radar line of sight) were synthesized (simulated) from ALOS-PALSAR full-polarimetric data of 14th December 2008 over central state farm central latitude and longitude 29°15'N/75°43'E and bounds for northwest corner is 29°24'N/75°37'E and southeast corner is 29°07'N/75°48'E in Hisar, Haryana (India). Supervised classification was conducted for crops and few other landuse classes based on ground truth measurements using maximum-likelihood distance measures derived from the complex Wishart distribution of SAR data at various polarization combinations. It has been observed that linear full-polarimetric data showed maximum classification accuracy (92%) followed by circular-full (89%) and circular-dual polarimetric data (87%), which was followed by hybrid polarimetric data (73-75%) and then linear dual polarimetric data (63-71%). Among the linear dual polarimetric data, co-polarization complex data showed better classification accuracy than the cross-polarization data. Also multi-date single polarization SAR data over central state farm during rabi (winter) season was analyzed and it was observed that single date full-polarimetric SAR data produced equally good classification result as the multi-date single polarization SAR data.
Citation
Dipanwita Haldar, Anup Das, Shiv Mohan, Om Pal, Ramesh S. Hooda, and Manab Chakraborty, "Assessment of L-Band SAR Data at Different Polarization Combinations for Crop and Other Landuse Classification," Progress In Electromagnetics Research B, Vol. 36, 303-321, 2012.
doi:10.2528/PIERB11071106
References

1. Ainsworth, T. L., J. P. Kelly, and J.-S. Lee, "Classification comparisons between dual-pol, compact polarimetric and quad-pol SAR imagery," ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 64, 464-471, 2009.
doi:10.1016/j.isprsjprs.2008.12.008

2. Bouman, B. A. M. and D. H. Hoekman, "Multi-temporal, multi-frequency radar measurements of agricultural crops during the Agriscatt-88 campaign in the Netherlands," International Journal of Remote Sensing, Vol. 14, 1595-1614, 1993.
doi:10.1080/01431169308953988

3. Ballester-Berman, J. D. and J. M. Lopez-Sanchez, "Time series of hybrid-polarity parameters over agricultural crops," Geoscience and Remote Sensing Letters, in press, 2011.

4. ENVI and SARSCAPE ver 4.2 2009 ITT Visual Information Solutions, SARscape is a Registered Trademark of Sarmap s.a. Switzerland.

5. Foody, G. M., "Status of landcover classification accuracy assessment," Remote Sensing of Environment, Vol. 80, 185-201, 2002.
doi:10.1016/S0034-4257(01)00295-4

6. Ferro-Famil, L., E. Pottier, and J. S. Lee, "Unsupervised classification of multifrequency and fully polarimetric SAR images based on the H/A/Alpha --- Wishart classifier," IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, No. 11, 2332-2341, 2001.
doi:10.1109/36.964969

7. Freeman, J., J. D. Villasenor, H. P. Klein, and J. Groot, "On the use of multi-frequency and polarimetric radar backscatter features for classification of agricultural crops," Int. J. Remote Sensing, Vol. 15, No. 9, 1799-1812, 1994.
doi:10.1080/01431169408954210

8. Hoekman, D. H. and B. A. M. Bouman, "Interpretation of C-and X-band radar images over an agricultural area, the flevoland test site in the agriscatt-87 campaign," International Journal of Remote Sensing, Vol. 14, 1577-1594, 1993.
doi:10.1080/01431169308953987

9. Lavalle, M., D. Solimini, E. Pottier, and Y.-L. Desnos, "Compact polarimetric radar interferometry," IET Radar Sonar Navig., Vol. 4, No. 3, 449-456, 2010.
doi:10.1049/iet-rsn.2009.0049

10. Lee, J. S., M. R. Grunes, and G. De Grandi, "Polarmetric SAR speckle filtering and its implication on classification," IEEE Trans. Geosci. Remote Sensing, Vol. 37, 290-301, 1999b.

11. Lee, J. S., K. W. Hoppel, S. A. Mango, and A. R.Miller, "Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery," IEEE Trans. Geosci. Remote Sensing, Vol. 32, 1017-1028, 1994b.

12. Lee, J.-S., M. R. Grunes, and R. Kwok, "Classification of multi-look polarimetric SAR imagery based on complex wishart distributions," International Journal of Remote Sensing, Vol. 15, No. 11, 2299-231, 1994.
doi:10.1080/01431169408954244

13. Lee, J.-S., M. R. Grunes, and E. Pottier, "Quantitative comparison of classification capability: Fully polarimetric versus dual-and single-polarization SAR," IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, No. 11, 2343-2351, 2001.
doi:10.1109/36.964970

14. Lee, J.-S., M. R. Grunes, T. L. Ainsworth, L. J. Du, D. L. Schuler, and S. R. Cloude, "Unsupervised classification using polarimetric decompositions and the complex wishart classifier," IEEE Transactions on Geoscience and Remote Sensing, Vol. 37, No. 5, 2249-2258, 1999.
doi:10.1109/36.789621

15. Lim, H. H. and J. Geophys. Res., "Classification of earth terrain using polarimetric SAR images,", Vol. 94, 7049-7057, 1989.

16. Mishra, P., D. Singh, and Y. Yamaguchi, "Landcover classification of PALSAR images," Progress In Electromagnetic Research, Vol. 30, 47-70, 2011.

17. Nghiem, S. V., S. H. Yueh, R. Kwok, and F. K. Li, "Symmetry properties in polarimetric remote sensing," Radio Science, Vol. 27, No. 5, 693-711, 1992.
doi:10.1029/92RS01230

18. Nielsen, A. A., H. Skriver, and K. Conradsen, "Complex wishart distribution based analysis of polarimetric synthetic aperture radar data," IEEE Symposium Proceedings, 1-6, 2007.

19. Nord, M., T. L. Ainsworth, J.-S. Lee, and N. Stacy, "Comparison of compact polarimetric synthetic aperture radar modes," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 1, 174-188, 2009.
doi:10.1109/TGRS.2008.2000925

20. Recent advances in development of the open source tool box for polarimetric and interferometric polarimetric SAR data processing, The Polsarpro v 4.1.5. Eric Pottier IETR UMR CNRS 6164. Univ. of Rennes. SAPHIR Team, Rennes, France.

21. Raney, R. K., "Dual-polarized SAR and stokes parameters," IEEE Geoscience and Remote Sensing Letters, Vol. 3, No. 3, 317-319, 2006.
doi:10.1109/LGRS.2006.871746

22. Raney, R. K., "Hybrid-polarity SAR architecture," IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, No. 1, 3397-3404, 2007.
doi:10.1109/TGRS.2007.895883

23. Schotten, C. G. J., W. W. L. Van Rooy, and L. L. F. Janssen, "Assessment of the capabilities of multi-temporal ERS-1 SAR data to discriminate between agricultural crops," Int. J. Remote Sensing, Vol. 16, No. 14, 2619-2637, 1995.
doi:10.1080/01431169508954580

24. Skriver, H., T. S. Morten, and A. G. Thomsen, "Multitemporal C-and L-band polarimetric signatures of crops," IEEE Transactions on Geoscience and Remote Sensing, Vol. 37, No. 5, 2413-2429, 1999.
doi:10.1109/36.789639

25. Souyris, J. C. and S. Mingot, "Polarimetry based on one transmitting and two receiving polarizations: the π/4 mode," Proc. IGARSS, 4 Toronto, Canada, 2002.

26. Souyris, J. C., P. Imbo, R. Fjortoft, S. Mingot, and J. S. Lee, "Compact polarimetry based on symmetry properties of geophysical media: the π/4 mode," IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 3, 634-646, 2005.
doi:10.1109/TGRS.2004.842486

27. Stacy, N. and M. Preiss, "Compact polarimetric analysis of X-band SAR data," In. Proceedings of EUSAR, 4 Dresden, May 16--18, 2006 (on CDROM).

28. Boerner, W. M., et al. "Polarimetry in radar remote sensing: Basic and applied concepts," Principles and Applications of Imaging Radar, The Manual of Remote Sensing, 3rd edition, Ch. 5, Wiley, New York, 1998.