Vol. 20
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-08-19
Photonic Band Structures and Enhancement of Omnidirectional Reflection Bands by Using a Ternary 1D Photonic Crystal Including Left-Handed Materials
By
Progress In Electromagnetics Research M, Vol. 20, 81-94, 2011
Abstract
In this paper, we use the Bloch theorem and transfer matrix method to calculate the dispersion relation of a ternary 1D photonic crystal with left-handed materials. Then, we obtain the total omnidirectional reflection band gaps of this structure. We demonstrate that the omnidirectional reflected frequency bands are enlarged in comparison with ordinary materials with positive index of refraction.
Citation
Abdolrasoul Gharaati, and Z. Zare, "Photonic Band Structures and Enhancement of Omnidirectional Reflection Bands by Using a Ternary 1D Photonic Crystal Including Left-Handed Materials," Progress In Electromagnetics Research M, Vol. 20, 81-94, 2011.
doi:10.2528/PIERM11070711
References

1. Sukhovanov, A. and V. Guryev, Photonic Crystals Physics and Practical Modeling, Springer Series in Optical Science, New York, 2009.

2. Saleh, B. E. A. and M. C. Teich, Fundamentals of Photonics, Wiley, New York, 2007.

3. Skorobogatiy, M. and J. Yang, Fundamentals of Photonic Crystal Guiding, Cambridge University Press, New York, 2009.

4. Gharaati, A. and S. A. Serajfard, "Investigation of a ternary 1D photonic crystal band gap width," International Conference on Photonics (ICP), ISBN. 978-1-4244-7186-7, 2010.

5. Dai, Q. F., S. Lan, L. J. Wu, and H. Z. Wang, "Two-photon fabrication of photonic crystals by single-beam laser holography lithography," Journal of Applied Physics, Vol. 107, No. 7, 074311-074314, 2010.
doi:10.1063/1.3374476

6. Lee, H. Y. and T. Yao, "Design and evaluation of omnidirectional one-dimensional photonic crystals," Journal of Applied Physics, Vol. 93, No. 2, 819-830, 2003.
doi:10.1063/1.1530726

7. Jiang, H. Y., H. Li, and Y. Zhang, "Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials," Applied Physics Letters, Vol. 83, No. 26, 5386-5388, 2003.
doi:10.1063/1.1637452

8. Ye, Z., J. Zheng, Z. Wang, and D. Liu, "Characteristics of band structures in 1D photonic crystals containing alternate left-right handed materials," Solid State Communications, Vol. 136, 495-498, 2005.
doi:10.1016/j.ssc.2005.09.027

9. Shadrivov, I. V., A. A. Sukhorukov, and Y. S. Kivshar, "Complete band gaps in one-dimensional left-handed periodic structures," Physical Review Letters, Vol. 95, 193903-1-4, 2005.

10. Chen, J.-Y., J.-Y. Yeh, L.-W. Chen, Y.-G. Li, and C.-C. Wang, "Design and modeling for enhancement of light extraction in light-emitting diodes with archimedean lattice photonic crystals," Progress In Electromagnetics Research B, Vol. 11, 265-279, 2009.
doi:10.2528/PIERB08112704

11. Nozhat, N. and N. Granpayeh, "Speciality fibers designed by photonic crystals," Progress In Electromagnetics Research, Vol. 99, 225-244, 2009.
doi:10.2528/PIER09092309

12. Dastmalchi, B., R. Kheradmand, A. Hamidipour, A. Mohtashami, K. Hingerl, and J. Zarbakhsh, "Local dispersion of guiding modes in photonic crystal waveguide interfacts and hetero-structures," Progress In Electromagnetics Research B, Vol. 26, 39-52, 2010.
doi:10.2528/PIERB10050104

13. Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, Oxford, 1995.

14. Singh, S. K., J. P. Pandy, K. B. Thapa, and S. P. Ojha, "Structural parameters in the formation of omnidirectional high reflectors," Progress In Electromagnetics Research, Vol. 70, 53-78, 2007.
doi:10.2528/PIER07010501

15. Manzanares-Martines, J., R. Archuleta-Garcia, P. Castro- Garay, D. Moctezuma-Enriquez, and E. Urrutia-Banuelos, "One-dimensional photonic heterostructure with broadband omnidirectional reflection," Progress In Electromagnetics Research, Vol. 111, 105-117, 2011.
doi:10.2528/PIER10110404

16. Srivastava, R., S. Pati, and S. P. Ojha, "Enhancement of omnidirectional reflection in photonic crystal heterostructure," Progress In Electromagnetics Rresearch B, Vol. 1, 197-208, 2008.
doi:10.2528/PIERB07102903

17. Srivastava, S. K. and S. P. Ojha, "Enhancement of omnidirectional reflection bands in one-dimensional photonic crystals with left-handed materials," Progress In Electromagnetics Research, Vol. 68, 91-111, 2007.
doi:10.2528/PIER06061602

18. Srivastava, R., K. B. Thapa, S. Pati, and S. P. Ojha, "Omni-directional reflection in one dimensional photonic crystal," Progress In Electromagnetics Research B, Vol. 7, 133-143, 2008.
doi:10.2528/PIERB08020601

19. Engheta, N. and R. W. Ziolkowski, Metamaterials Physics and Engineering Explorations, IEEE Press, Canada, 2006.

20. Marques, R., F. Martin, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design and Microwave Applications, Wiley, Canada, 2007.

21. Solymar, L. and E. Shamonina, Wave in Metamaterials, Oxford University Press, New York, 2009.

22. Marqus, P. and C. M. Soukoulis, Wave Propagation from Electrons to Photonic Crystals and Left-handed Materials, Princeton University Press, Canada, 2008.

23. Wenshan, C. and S. Vladimir, Optical Metamaterials Fundamen-tals and Applications, Springer, New York, 2010.

24. Caloz, C., C. C. Chang, and T. Itoh, "Full wave verification of the fundamental properties of left-handed materials in waveguide configurations," Journal of Applied Physics, Vol. 90, No. 11, 5483-5486, 2001.
doi:10.1063/1.1408261

25. Yeh, P., A. Yariv, and C. S. Hong, "Electromagnetic propagation in periodic stratified media. I. General theory," J. Opt. Soc. Am., Vol. 67, No. 4, 423-438, 1977.
doi:10.1364/JOSA.67.000423