Vol. 35
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-10-16
Photonic Modes in Dispersive and Lossy Superlattices Containing Negative-Index Materials
By
Progress In Electromagnetics Research B, Vol. 35, 133-149, 2011
Abstract
We have calculated the photonic bands of a dispersive and lossy periodic array of left-handed metamaterial layers in air. Depending on the behavior of the fields inside the metamaterial component, two categories of modes for oblique propagation are identified: the oscillatory and the tunneling modes. In order to characterize these two types of solutions, we calculate the complex photonic bands; a criterion of penetration-limit is introduced to quantify the absorption effects. Our results show that oscillatory TE and TM waves can be excited by light incident from air at low frequencies (within the metamaterial regime). In the region of high frequencies only TE tunneling modes are available. To complement the description of the absorption effects, we present transmission spectra and field profiles for TE waves in finite layered systems the two types of modes here studied.
Citation
Hector Kinto-Ramírez, Martha Alicia Palomino-Ovando, and Felipe Ramos-Mendieta, "Photonic Modes in Dispersive and Lossy Superlattices Containing Negative-Index Materials," Progress In Electromagnetics Research B, Vol. 35, 133-149, 2011.
doi:10.2528/PIERB11062911
References

1. Veselago, V. G., "Electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Agranovich, V. M. and Y. N. Garstein, "Spatial dispersion and negative refraction of light," Physics-Uspekhi, Vol. 49, 1029-1044, 2006.
doi:10.1070/PU2006v049n10ABEH006067

3. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative refractive index of refraction," Science, Vol. 292, 77, 2001.
doi:10.1126/science.1058847

4. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966, 2000.
doi:10.1103/PhysRevLett.85.3966

5. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

6. Shelby, R. A., D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, "Microwave transmission through a two dimensional, isotropic, left-handed metamaterial," Appl. Phys. Lett., Vol. 78, 489-491, 2001.
doi:10.1063/1.1343489

7. Pandey, G. N., K. B. Thapa, S. K. Srivastava, and S. P. Ojha, "Band structures and abnormal behavior of one dimensional photonic crystal containing negative index materials," Progress In Electromagnetic Research M, Vol. 2, 15-36, 2008.
doi:10.2528/PIERM08021501

8. Srivastava, S. K. and S. P. Ojha, "Enhancement of omnidirectional reflection bands in one-dimensional photonic crystals with left-handed materials," Progress In Electromagnetic Research, Vol. 68, 91-111, 2007.
doi:10.2528/PIER06061602

9. Wang, Z.-Y., X.-M. Chen, X.-Q. He, S.-L. Fan, and W.-Z. Chan, "Photonic crystal narrow filters with negative refractive index structural defects," Progress In Electromagnetic Research, Vol. 80, 421-430, 2008.
doi:10.2528/PIER07121002

10. Zhang, Z. M. and C. J. Fu, "Unusual photon tunneling in the presence of a layer with a negative refractive index," Appl. Phys. Lett., Vol. 80, 1097-1099, 2002.
doi:10.1063/1.1448172

11. Kim, K. Y., "Photon tunneling in composite layers of negative-and positive-index media," Phys. Rev. E, Vol. 70, 047603, 2004.
doi:10.1103/PhysRevE.70.047603

12. Li, J. S., L. Zhou, C. T. Chan, and P. Sheng, "Photonic band gap from a stack of positive and negative index materials," Phys. Rev. Lett., Vol. 90, 083901, 2003.
doi:10.1103/PhysRevLett.90.083901

13. Yuan, Y., L. Ran, J. Huangfu, H. Chen, L. Shen, and J. A. Kong, "Experimental verification of zero order bandgap in a layered stack of left-handed and right-handed materials," Optics Express, Vol. 14, 2220-2227, 2006.
doi:10.1364/OE.14.002220

14. Wu, L., S. He, and L. Shen, "Band structure for a one-dimensional photonic crystal containing left-handed materials," Phys. Rev. B, Vol. 67, 235103, 2003.
doi:10.1103/PhysRevB.67.235103

15. García, N. and M. Nieto-Vesperinas, "Left-handed materials do not make a perfect lens," Phys. Rev. Lett., Vol. 88, 207403, 2002.
doi:10.1103/PhysRevLett.88.207403

16. Rao, X. S. and C. K. Ong, "Amplifications of evanescent waves in a lossy left-handed material slab," Phys. Rev. B, Vol. 68, 113103, 2003.
doi:10.1103/PhysRevB.68.113103

17. De Dios-Leyva, M. and J. A. Leyva-Galano, "Influence of absorption on the zero-n gap in one dimensional photonic crystals with left-handed materials," Phys. Rev. B, Vol. 78, 115106, 2008.
doi:10.1103/PhysRevB.78.115106

18. Zhou, X. and G. Hu, "Total transmission condition for photon tunneling in a layered structure with metamaterials," J. Opt. A: Pure Appl. Opt., Vol. 9, 60-65, 2007.
doi:10.1088/1464-4258/9/1/011

19. Markos, P. and C. M. Soukoulis, "Transmission studies of left-handed material," Phys. Rev. B, Vol. 65, 033401, 2001.
doi:10.1103/PhysRevB.65.033401

20. Smith, D. R. and N. Kroll, "Negative refractive index in left-handed materials," Phys. Rev. Lett., Vol. 85, 2933, 2000.
doi:10.1103/PhysRevLett.85.2933

21. Pacheco, Jr., J., T. M. Grzegorczyk, B.-I. Wu, Y. Zhang, and J. A. Kong, "Power propagation in homogeneous isotropic frequency-dispersive left-handed media," Phys. Rev. Lett., Vol. 89, 257401, 2002.
doi:10.1103/PhysRevLett.89.257401

22. Koschny, T., M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Effective medium theory of left-handed materials," Phys. Rev. Lett., Vol. 93, 107402, 2004.
doi:10.1103/PhysRevLett.93.107402

23. Caloz, C. and T. Itoh, Electromagnetic Metamaterial: Transmission Line Theory and Microwave Applications, John Wiley & Sons, Inc., 2006.

24. Gupta, S. D., R. Arun, and G. S. Agarwal, "Subluminal to superluminal propagation in a left-handed medium," Phys. Rev. B, Vol. 69, 113104, 2000.
doi:10.1103/PhysRevB.69.113104

25. Villa-Villa, F., J. A. Gaspar-Armenta, and A. Mendoza-Suárez, "Surface modes in one dimensional photonic crystals that include left handed materials," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 4, 485-499, 2007.
doi:10.1163/156939307779367323