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Abstract—We have calculated the photonic bands of a dispersive
and lossy periodic array of left-handed metamaterial layers in air.
Depending on the behavior of the fields inside the metamaterial
component, two categories of modes for oblique propagation are
identified: the oscillatory and the tunneling modes. In order to
characterize these two types of solutions, we calculate the complex
photonic bands; a criterion of penetration-limit is introduced to
quantify the absorption effects. Our results show that oscillatory
TE and TM waves can be excited by light incident from air at low
frequencies (within the metamaterial regime). In the region of high
frequencies only TE tunneling modes are available. To complement the
description of the absorption effects, we present transmission spectra
and field profiles for TE waves in finite layered systems for the two
types of modes here studied.

1. INTRODUCTION

Left-handed metamaterials (LHMs), or negative-index materials, are a
new class of artificial structures with novel optical properties. They are
left because they can support electromagnetic waves with electric field,
magnetic field and wave vector following a left-hand rule. The reason
underlying this behavior, discussed initially by Veselago [1], is that
these materials have negative index of refraction: within a frequency
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range these materials display simultaneously negative permittivity and
negative permeability. [It is worth mentioning that very interesting
remarks on the initial studies of negative refraction were recently
pointed out by Agranovich and Gartstein [2]; there exists documentary
evidence suggesting that pioneering studies of this phenomenon could
have been realized as early as 1940.] Experimentally, the left-hand
behavior was demonstrated in microwave regime for a system of split
ring resonators interspersed with metallic wires [3].

Once the fundamental properties of the LHMs were known [4–6],
it was natural to propose the creation of heterostructures with LHM
constituents. For layered structures containing LHMs and ordinary
right-handed materials (RHMs), several results have been reported [7–
14]. For example, unusual photon tunneling between two semi-infinite
media separated by a RHM-LHM bilayer was found in the microwave
regime [10]. Also, in calculating the transit time through LHM
barriers it was demonstrated that a phase-stationary approximation
could be inappropriate because the tunneling effect apparently violates
causality [11]. On the other hand, a new type of photonic band gap
(not based on interference mechanisms) has been found in LHM/RHM
structures associated to the zero value of the averaged refractive index
(the zero-n̄ gap) [12, 13].

Reference [14] explicitly demonstrates the existence of four types
of bulk electromagnetic modes in periodic LHM/RHM arrays: the
spurious modes, without physical meaning because they exhibit
complex frequency, the discrete modes, real modes that appear
at the center or the border of the Brillouin zone, the tunneling
modes, characterized by evanescent (decreasing or increasing) fields
in subsequent layers, and, the ordinary propagating modes. The
same electromagnetic modes are expected even when absorption is not
ignored [10, 14].

We know that in general, losses attenuate the propagating fields
in RHMs or LHMs. In the latter case, however, some authors have
addressed a more relevant role of absorption as material property;
evanescent amplifying waves in non absorbent metamaterial slabs can
drastically change to waves of decaying behavior when losses are taken
into account [15]. Consequently, the focusing effect of a LHM slab
as a perfect lens, which is one of the most interesting applications
suggested for LHMs [4], could be substantially diminished. However,
other authors have found that the amplification of pure evanescent
waves depends not only on losses, but also on the slab thickness. The
final consequence could be that superlensing effect can be achieved
even under the presence of small absorption [16].

Losses also play an important role in the optical properties of
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multilayer structures with LHM constituents. For example, the very
interesting zero-n̄ gap that was found in non absorbent photonic
systems can disappear, because the absorption modifies the photonic
band structure introducing new photonic states inside the gaps [17].
On the other hand, it is possible to control the damping of evanescent
amplifying waves in a thick LHM slab by sectioning it in several layers
to form a LHM/RHM multilayer. Knowing that the power loss is
proportional to the field intensity, the loss effect can be diminished by
increasing the number of layers in the multilayer structure but leaving
the same total thickness of the original LHM sample [18]. As thinner
the LHM layers are, shorter is the enhancement of the field amplitude
in each layer and smaller the power loss.

In this paper we study numerically the photon propagation in
periodic superlattices of alternated LHM and RHM layers. The main
goal is to quantify the role played by the losses. For the LHM
component we use dispersive equations for both permittivity and
permeability; absorption is included in these expressions and the RHM
is air. The projected photonic bands are calculated to identify the
frequency regions of modes of oscillatory and tunneling character. Due
to the presence of absorption the photonic bands are complex. In
describing the fields we introduce a numerical criterion to separate the
modes in the bands as a function of their penetration distance. Finally,
field profiles and transmission spectra in finite superlattice samples are
presented here, establishing a connection with the photonic bands.

In a right-handed system constituted by two semiinfinite media
separated by a layered barrier, the tunneling phenomenon involves
evanescent fields in the barrier. The incident fields that decay
exponentially at least in one of the barrier layers reach the transmitting
medium with finite amplitude conveying electromagnetic energy. On
the other hand, if a LHM layer is introduced in the barrier, the
tunneling phenomenon preserves and the transmitted intensity could
be amplified (photons can tunnel a greater distance). The reason of this
phenomenon is that a LHM amplifies the evanescent fields. The effect
has been clearly discussed in Reference [10]. Here we shall describe
the properties of the electromagnetic waves in a periodic LHM/RHM
layered structure. We focus the study on the absorption effects on the
modes having oscillatory fields in the RHM (air) layers and evanescent
or oscillatory fields in the LHM layers. [Throughout this paper we
will use the term oscillatory (tunneling) mode for a solution of the
wave equation having oscillatory (exponentially decaying/increasing)
fields in the LHM layers] We shall see that within the metamaterial
regime the waves which are incident from air are more penetrating in
the region of high frequencies; they are TE waves of tunneling type.
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LHMs are generally modeled using an effective permittivity
εeff and an effective permeability µeff which involve the absorption
parameters γe and γm, respectively. It is not easy to estimate
theoretically the values of these two parameters. However, they have
been quantified by comparing very precise numerical simulations with
experimental results [6, 19, 20]. An important point is that many
authors have assigned the same value for both parameters [6, 21, 22].
Thus, the dissipation factor γe = γm = γ is seen as an effective factor
that results from all the possible mechanisms of losses: currents in the
metallic components, energy dissipation in LC resonators, and even,
due to the complicated structure of the LHM unit cell, scattering of
light. For describing the wave propagation in layered LHM/RHM
arrays we will assume that εeff and µeff are valid for the LHM
components. This is possible because the wavelengths associated to
the resonances of εeff and µeff — that define the lower frequency limit
of the metamaterial regime — are much larger than the intrinsic unit
cell size. Such approximation remains valid even for LHM slabs of a
few cells [12, 23].

The paper is organized as follows: in Section 2 we present the
mathematical formalism employed in our calculations. Models for the
dispersive parameters of a LHM are discussed. Then in Section 3
the main characteristics of the oscillatory and tunneling modes are
analyzed. Transmission spectra as a function of the absorption
parameter are shown. Finally in Section 4 the conclusions of the work
are given.

2. METHOD OF CALCULATION

For describing the LHM layers we take into account dispersive and
lossy effects employing the frequency dependent permittivity and
permeability functions given by [24]

ε(ω) = 1− ω2
p

ω2 + iγω
, µ(ω) =

ω2 − ω2
b

ω2 − ω2
0 + iγω

. (1)

The parameters have the values: ωp,b,0 = 2πfp,b,0; fp = 12 GHz;
fb = 6 GHz; f0 = 4 GHz and γ can be chosen as high as γ = 0.1ω0.
In Figure 1 we plot the respective real and imaginary components of
ε(ω) and µ(ω). As can be seen the metamaterial frequency regime
is defined by the frequency range where Re (µ) is negative. [For the
value of the absorption parameter γ we are following the criteria of
several authors. In Reference [6], for example, the theory-experiment
matching required γ′ = 1GHz when the LC resonance f0 = 10.5GHz.
Thus the absorption parameter can be as high as γ′ = 0.1f0].
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We consider a system of alternated LHM and RHM layers that
is periodic in the z direction. For the photonic band structure and
transmission calculations we have employed the well-known matrix
transfer method. The unit cell consists of two layers of permittivity,
permeability and thickness ε1, µ1, d1 and ε2, µ2, d2, respectively. The
period of the structure is a = d1 + d2. The index of refraction of the
layers is written as nj = ±√εjµj , with j = 1, 2; the positive (negative)
sign corresponds to the RHM (LHM).

The basic relation between the electric and magnetic fields of
different layers is written as(

Ey

Hx

)

z=zN

= M

(
Ey

Hx

)

z=z1

, (2)

with the transfer matrix given by M = mNmN−1mN−2 . . .mj . . . m1

(N is the number of layers) and

mj =
[

cos kzjdj
i

Yj
sin kzjdj

iYj sin kzjdj cos kzjdj

]
, (3)

where Yj = εjω
ckzj

for TM waves and Yj = − ckzj

µjω for TE waves; c

is the speed of light and kzj is the component of the wave vector
perpendicular to the layers. The electric and magnetic fields are
written as

Eyj = −A+
j eikzjz −A−j e−ikzjz, (4)

Hxj = Yj

(
A+

j eikzjz −A−j e−ikzjz
)

, (5)

In terms of the reflection coefficient r the field amplitudes in any
internal layer can be also obtained with the transfer matrix method:

A+
j =

e−ikzjz

2Yj
{(−1−r) (m21j−m11jYj)+Y0(1−r)(m22j−m12jYj)} , (6)

A−j =
eikzjz

−2Yj
{(−1−r) (m21j+m11jYj)+Y0(1−r) (m22j+m12jYj)} , (7)

In these equations the four matrix components m11j , m12j , m21j and
m22j are the components of the 2 × 2 matrix Mj = mjmj−1 . . . m1.
Finally, with the same transfer matrix method we find the reflection
coefficient:

r =
(−m21N + m22NY0) + (−m11N + m12NY0)YN+1

(m11N + m12NY0)YN+1 + (m21N + m22NY0)
. (8)

Now the matrix components are the four elements of the matrix
MN = mNmN−1 . . . m1.
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When both εj and µj are negative, the sign of the wave vector

kzj = ±
√

ω2

c2
εjµj − β2 should be also negative. Afterwards, by

applying the Bloch theorem it is easy to obtain the dispersion equation
for the periodic system

cosKa =
m11 + m22

2
. (9)

In this equation K is the Bloch wave vector that takes the values of
the reduced Brillouin zone, 0 ≤ K ≤ π/a; (m11, m12; m21, m22) is the
transfer matrix of the unit cell. Finally the allowed frequency bands
for wave propagation satisfy the condition | cosKa| ≤ 1.

In calculating the frequency bands of oblique propagation, the so-
called projected bands, we must proceed carefully in order to identify
the type of modes in the bands. The general relation between the
frequency and the wave vector components in the j-th LHM layer is

ω =
c
√

β2 + k2
zjR − k2

zjI + 2ikzjRkzjI

√
εjµj

, (10)

where kzj = kzjR+ikzjI is the complex wave vector component in the z
direction and β is the real wave vector component in the x direction (β
is the same in all the layers). We look for solutions with real frequency.
Without losses it is easy to classify the possible electromagnetic modes.
Solutions with kzjR 6= 0 and kzjI = 0 correspond to ordinary oscillatory
fields. It means that the superlattice support electromagnetic modes
with oscillatory fields in the LHM layers. On the other hand, with
kzjR = 0 and kzjI 6= 0, with β2 > k2

zjI , the fields vary exponentially
(decreasing/increasing) in the LHM layers; these are the tunneling
modes.

It is known that under lossless condition the allowed photonic
bands are characterized by a real Bloch wave vector. Nonetheless,
when absorption is taken into account, numerical solutions for the wave
equation can be found with real frequency but the Bloch wave vector
becomes complex, K = Kr + iKi; consequently, the waves will decay
exponentially as they penetrate into the superlattice, with penetration
distance inversely proportional to Ki. Note the reader that losses make
more complex the solutions for Equation (10) because kzjR and kzjI

are different than zero simultaneously. Thus, inside a single LHM
layer of the superlattice the field amplitude is expected to decrease as
the wave penetrates. However, as we mentioned previously, increasing
amplitude can also exists particularly for the tunneling modes.
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3. NUMERICAL RESULTS

We begin presenting the photonic band structure of the LHM-RHM
superlattice described previously. The filling fraction for the LHM
is f = 0.5. In Figure 1 we find that 0.133 < ωa/2πc < 0.199 is
the metamaterial regime (there exist also, beyond the scale of the
figure, the region of opacity, 0.20 < ωa/2πc < 0.40, and the region
of transparency, ωa/2πc > 0.40). We focus the study only on the
metamaterial regime. Figure 2 shows the TE (right panel) and TM
(left panel) projected bands (β, ω) for lossless materials. The darker
regions correspond to modes with oscillating fields in the LHM layers.
Contrarily, in the light gray regions the fields are evanescent in those
layers. Note that for low frequencies the solutions are quite symmetric

(a)

(b)

Figure 1. The frequency-dispersive permittivity ε(ω) and
permeability µ(ω) functions. With finite loss parameter γ both
functions become complex: (a) γ = 0 and (b) γ = 0.1ω0. The frequency
region in which both Re (ε) and Re (µ) are negative is the metamaterial
regime.
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Figure 2. The projected TM and TE photonic bands. The Gaussian-
type dotted curve is the metamaterial light-curve. The dotted right
lines define the light-cone. For any β value, the borders of the projected
bands correspond to the borders of the Brillouin zone. The arrows
indicate the two regions inside the light-cone of interest in this work.
The darker regions for both TE and TM polarizations correspond to
oscillatory modes; the light gray region for TE polarization inside the
light-cone contains the tunneling modes.

for both polarizations. In order to define the regions of tunneling
modes we are plotting in Figure 2 the vacuum light-line (β = ω

c )
and the metamaterial light-curve (β = ω

c

√
εmµm). In finite samples

only the modes inside the light-cone can be excited by light incident
from vacuum; outside of the light-cone the fields in the air layers are
evanescent. On the other hand, below the metamaterial light-curve
the modes are oscillatory in the LHM layers but above this curve the
modes acquire evanescent behavior. Thus, with vacuum as incident
and transmitting media, the tunneling modes for wave transmission
in finite samples are those lying inside the light-cone and above the
metamaterial light-curve (See Figure 2).

Figure 2 shows that the photonic bands for wave propagation
along the superlattice axis (β = 0) are, as it must be, the same for
TE and TM polarizations. There exist, however, a strong difference
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of the solutions for oblique propagation (β 6= 0): an unusual photonic
band defined only for β 6= 0 arises for TE modes. It is known that in
one dimensional photonic crystals of RHM components the projected
bands are wider as β → 0 (thinner as β → ∞). The bands on the
right panel of Figure 2 show that a RHM/LHM superlattice does not
follow this rule in the metamaterial regime. [Parenthetically, it is
worth mentioning that for large β the two upper TE bands of Figure 2
converge to the dispersion curve of the surface modes at the air/LHM
interface. Such modes appear due to the different permeability of both
media [25]. There exist also surface modes for TM waves, but they
appear above the scale of Figure 2, in the metallic regime. The topic
of surface waves will be not discussed in this paper].

Without losses the borders of the allowed projected bands are
defined by the border of the Brillouin zone. In Figure 3 we open
artificially the projected bands for TE modes at βa

2π = 0.1 [it is the same
Figure 2 but showing the dispersion relation inside the first Brillouin
zone for the selected β value]. As expected, the wave vector is real

Figure 3. The same as Figure 2 for TE modes but showing explicitly
the dispersion curve K vs. ω for βa/2π = 0.1. The Brillouin zone is
defined by the range 0 < K < π/a. The projected bands are artificially
separated to introduce the Brillouin zone (upper scale in the figure).
Inside an allowed band the Bloch wave vector is real and sweeps the
entire Brillouin zone. Inside a forbidden gap the Bloch wave vector is
complex.
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Figure 4. The same as Figure 3 but considering absorption
mechanisms. The projected bands correspond to regions — over the
complete plane of the figure — where the imaginary Bloch wave vector
satisfies Kia/2π ≤ 0.07. To visualize the complex curve of dispersion
at βa/2π = 0.1 we use the same upper scale for Kr and Ki.

inside the bulk bands and complex in the gaps. Now, in Figure 4 we
take the losses into account to plot the same TE bands of Figure 3. We
are using γ

ω0
= 0.1. The gray extended regions correspond to waves

with imaginary Bloch wave vector Kia
2π ≤ 0.07. Note that now strict

separation between oscillatory and tunneling modes is not possible
because the conditions kzjR = 0 and kzjI 6= 0 are not satisfied.

Plotting the projected bands has sense apparently only for lossless
systems. In such a case the allowed and forbidden bands are clearly
separated. As we mentioned above in the allowed bands the imaginary
Bloch vector is zero and the real Bloch vector sweeps the Brillouin
zone. On the other hand, in the forbidden bands the real Bloch
vector keeps its value of the border of the zone and the imaginary
component reaches its maximum value near the center of the band
gap. Figure 4 shows that losses break with this condition — now
the real and imaginary components of the Bloch vector have finite
values in the entire frequency region. For plotting projected bands
in presence of absorption we need to define the range of values of
either the real or the imaginary wave vector of the modes that will
be contained in them. This is completely necessary because the
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Figure 5. Complex projected photonic bands that show the effect
of the absorption on the field penetration into the superlattice.
The fields decay exponentially due to the imaginary Bloch wave
vector component. As smaller is this component, larger is the field
penetration.

absorption removes the pure forbidden and allowed frequency bands.
We decided to select a maximum value Ki0 and plot the solutions
satisfying Ki < Ki0. We remind the reader that the penetration
distance is inversely proportional to the imaginary vector: the larger
the imaginary vector, the shorter the penetration distance. Thus, the
bands for Ki < Ki0 contain modes that penetrate beyond the range of
z = 1/Ki0.

In Figure 5 we present the general behavior for both TE and
TM waves with the same absorption parameter γ

ω0
= 0.1 for three

limits of the imaginary Bloch wave vector; the bands in black are
those for modes of infinite penetrability because absorption is zero
for them. The three cases are: (a) Kia

2π ≤ 0.07. All the modes in
these bands penetrate at least the distance d ∼ 2.27a. In other words,
in the light gray region of Figure 5 the amplitude of all the modes
decays to 1/e of their reference value at distances equal or larger than
d = 2.27a. Due to the existence of modes more penetrating than
others, we proceed to find, step by step, the region of modes less
sensitive to the losses — the modes of behavior similar to the behavior
of the modes of the lossless situation. (b) Kia

2π ≤ 0.05. With this less
imaginary wave vector the lowest penetration distance of the modes in
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the gray regions of Figure 5 increases to d ∼ 3.18a. Finally with (c)
Kia
2π ≤ 0.03 the minimum penetration distance increases to d ∼ 5.3a.

The modes satisfying this condition are those of the dark gray zone
in Figure 5. As we can see in Figure 5 absorption leaves shorter and
shorter the region for the more penetrating modes. Note that regions
are superimposed. The region described in (a) contains the regions
of (b) and (c). Also the region (b) contains the region (c). Figure 5
is very important because it shows that the more penetrating modes
have TE polarization. They lie in a small region of frequencies near the
upper limit of the metamaterial regime. By comparing Figures 2 and 5
we conclude that these penetrating modes are of tunneling character.

So far we have presented general characteristics of the loss effect in
the bulk bands for oblique propagation. Now we present transmission
spectra through finite superlattice samples. The results are expected
consistent with the corresponding bulk bands. In Figure 6 we present
transmission spectra as function of the number of periods in the
sample. The transfer matrix method is used for this calculation and the
absorption coefficient is now γ

ω0
= 0.01. We are varying the frequency

of the TE incident wave with angle of incidence θi = 30◦. [There
exists a light-line of incidence, of slope ω

β = c
sin θi

, that lies inside the
light-cone and superimposes on the corresponding projected bands.
By varying the frequency of the incident wave we sweep all the (β, ω)

Figure 6. Peaks of transmittance through samples of finite number
of periods. The waves are TE, the angle of incidence from air is 30◦
and γ = 0.01ω0. The transmitting medium is also air. The curves
in this figure correspond to the maximum of transmission along the
oscillatory and tunneling regions.
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modes defined by this line and for each one of them we calculate the
transmission intensity. Frequencies corresponding to the oscillatory
and tunneling region are entirely swept]. Immediately we observe in
Figure 6 that the transmission peaks of tunneling waves are higher
independently of the number of layers. [It means that through the
entire oscillatory region there is not a mode of higher penetration
distance than the most penetrating mode in the tunneling region.] Note
that this comparison is only quantitative, in terms of the penetration
distance. It is not possible to compare tunneling and oscillatory modes
of same frequency because they lay in different regimes. Specifically for
a sample of 10 bilayers the frequencies and parallel wave vectors of the
oscillatory and tunneling peaks are ωa/2πc = 0.1607 (f = 4.82 GHz),
βa/2π = 0.08 and, ωa/2πc = 0.1962 (f = 5.88GHz), βa/2π = 0.098,
respectively. Because of the tunneling waves are more penetrating, in
their frequency region there should be available a smaller imaginary
Bloch wave vector than those in the oscillatory regime. In reality the
result of Figure 6 is already inferred from Figure 5. With βa/2π lower
that 0.1 the smaller imaginary Bloch wave vector exist in the upper
band, precisely in the tunneling region (See Figure 5).

To complement the analysis, we now present the field amplitudes
inside the periodic sample (when reflectance is calculated) for the two
types of modes here discussed.

We plot in Figure 7 the field profiles inside a sample of 20 periods.
Panels (a) and (b) are for oscillatory and tunneling waves, respectively.
The frequencies and angle of incidence correspond to the modes of
optimum transmission that gave place to Figure 6 at z/a = 20. For
the oscillatory mode the field amplitude oscillates from cell to cell with
larger changes, in average, in the LHM layers. Note that local minima
and maxima amplitudes can exist inside the LHM layers (z = 6a,
z = 16a, etc..) In general, due to the boundary conditions, the
field profile presents a structure of peaks with maxima and minima
just at the interfaces between the layers (at any interface the fields
Ex ∝ ε−1∂Hy/∂z and Hy ∝ µ−1∂Ex/∂z are continuous; because of the
change of sign of ε and µ from layer to layer, the derivative of the fields
must change sign through the interfaces). On the other hand, for the
tunneling mode the larger changes of amplitude occur in the air layers
where the fields oscillate because the corresponding mode lies inside
the light-cone. In the LHM the forward and backward evanescent fields
overlap giving place to almost constant amplitude through each LHM
layer.

The loss effect on the wave propagation is clearly observed in
Figure 7. As we mentioned previously the decay distance of the
fields inside the superlattice is defined by the imaginary Bloch wave
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(a)

(b)

Figure 7. TE field distribution in a sample of 20 bilayers. The
wave is incident from air with angle of incidence θi = 30◦. Solid
line, dashed line and dotted line correspond to absorption parameters
γ = 0, γ = 0.01ω0 and γ = 0.1ω0, respectively. (a) Oscillatory
mode: ωa/2πc = 0.1607 and βa/2π = 0.08, (b) Tunneling mode:
ωa/2πc = 0.1962 and βa/2π = 0.098.

vector Ki that depends on the position of the mode in the bulk
band. The two modes of Figure 7 have given optimum transmission in
the oscillatory and tunneling regions, respectively, when absorption is
γ
ω0

= 0.01 (See Figure 6 for a sample of 20 bilayers). From Figure 7
we deduce that even with absorption as high as γ

ω0
= 0.1 it is expected

larger transmittance by tunneling waves in a sample of 10 cells. At
this depth and with this absorption, the amplitude of the oscillatory
mode is Re (E/E0) = 0.025 while for the tunneling waves this rate is
Re (E/E0) = 0.1.

4. FINAL REMARKS AND CONCLUSIONS

It is important to remark that for describing the wave propagation
in lossy LHM/RHM superlattices, one requires to introduce complex
Bloch wave vectors. Consequently, it is necessary to redefine the
concept of projected band establishing an additional criterion for
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displaying them. We have chosen the magnitude of the imaginary Ki as
a good parameter for plotting spots on the plane (β, ω) corresponding
to photonic modes of defined penetrability. With this condition we
were able to exclude the less penetrating modes focusing the analysis on
those of larger penetration. It is interesting that for incident light from
vacuum the most penetrating modes into the LHM/RHM superlattice
are TE polarized; they are contained in a tiny spot near the upper limit
of the metamaterial regime and are tunneling modes in character.

In conclusion we have studied the photonic modes in a lossy and
dispersive LHM/RHM superlattice. We were interested in the modes
that can be excited by light which is incident from vacuum. Inside the
light-cone of vacuum we identify (via the light-curve of the LHM) the
oscillatory and tunneling modes in the non-lossy projected photonic
bands. In order to take into account absorption phenomena, we have
established a strategy for plotting the projected bands. By choosing a
maximum value for the imaginary Bloch wave vector Ki we can find
the regions in the plane (β, ω) corresponding to modes with equal or
larger penetration than that defined by Ki.

As is expected, the photonic bands are highly sensitive to the
losses. Even when absorption affects similarly the two types of modes,
we have presented numerical evidence that the intensity of the energy
transmitted by tunneling modes is the larger one. This result is
independent of the number of cells in the sample. Previous works have
demonstrated field amplification of evanescent waves by LHM/RHM
structures. The tunneling modes here presented are characterized by
evanescent and oscillatory waves in the LHM and RHM, respectively.
Our conclusion is that evanescent and oscillatory waves in subsequent
LHM-RHM layers couple more favorably to increase the penetration
length into the superlattice.

Finally, we have shown numerically the existence of a projected
band without modes at β = 0. The effect is completely
associated to the metamaterial regime because, in general, for one
dimensional photonic crystals of dielectric or metallic components
(RHM constituents) any projected band has acoustic type modes at
β = 0.
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