Vol. 19
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-07-04
Comparison of CPML Implementations for the GPU-Accelerated FDTD Solver
By
Progress In Electromagnetics Research M, Vol. 19, 61-75, 2011
Abstract
Three distinctively different implementations of convolutional perfectly matched layer for the FDTD method on CUDA enabled graphics processing units are presented. All implementations store additional variables only inside the convolutional perfectly matched layers, and the computational speeds scale according to the thickness of these layers. The merits of the different approaches are discussed, and a comparison of computational performance is made using complex real-life benchmarks.
Citation
Jukka I. Toivanen, Tomasz P. Stefanski, Niels Kuster, and Nicolas Chavannes, "Comparison of CPML Implementations for the GPU-Accelerated FDTD Solver," Progress In Electromagnetics Research M, Vol. 19, 61-75, 2011.
doi:10.2528/PIERM11061002
References

1. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edition, Artech House, Norwood, 2005.

2. Krakiwsky, S. E., L. E. Turner, and M. M. Okoniewski, "Acceleration of finite-difference time-domain (FDTD) using graphics processor units (GPU)," 2004 IEEE MTT-S International Microwave Symposium Digest, Vol. 2, 1033-1036, 2004.

3. Humphrey, J. R., D. K. Price, J. P. Durbano, E. J. Kelmelis, and R. D. Martin, "High performance 2D and 3D FDTD solvers on GPUs," Proceedings of the 10th WSEAS International Conference on Applied Mathematics, 547-550, World Scientific and Engineering Academy and Society (WSEAS), 2006.

4. Sypek, P., A. Dziekonski, and M. Mrozowski, "How to render FDTD computations more effective using a graphics accelerator," IEEE Transactions on Magnetics, Vol. 45, 1324-1327, 2009.

5. Kim, K.-H., K. Kim, and Q.-H. Park, "Performance analysis and optimization of three-dimensional FDTD on GPU using roofline model," Computer Physics Communications, Vol. 182, 1201-1207, 2011.

6. Donno, D. D., A. Esposito, L. Tarricone, and L. Catarinucci, "Introduction to GPU computing and CUDA programming: A case study on FDTD [EM programmer's notebook]," IEEE Antennas and Propagation Magazine, Vol. 52, 116-122, 2010.

7. Roden, J. A. and S. D. Gedney, "Convolution PML (CPML): An effcient FDTD implementation of the CFS-PML for arbitrary media," Microwave and Optical Technology Letters, Vol. 27, No. 5, 334-339, 2000.

8. Inman, M. J., A. Z. Elsherbeni, J. Maloney, and B. Baker, "GPU based FDTD solver with CPML boundaries," Proceedings of 2007 IEEE Antennas and Propagation Society International Symposium, 5255-5258, 2007.

9. Valcarce, A., G. D. L. Roche, and J. Zhang, "A GPU approach to FDTD for radio coverage prediction," Proceedings of 11th IEEE Singapore International Conference on Communication Systems, 1585-1590, 2008.

10. Valcarce, A., G. de la Roche, A. Juttner, D. Lopez-Perez, and J. Zhang, "Applying FDTD to the coverage prediction of WiMAX femtocells," EURASIP Journal on Wireless Communications and Networking, Vol. 2009, 2009.

11. Tay, W. C., D. Y. Heh, and E. L. Tan, "GPU-accelerated funda-mental ADI-FDTD with complex frequency shifted convolutional perfectly matched layer," Progress In Electromagnetics Research M, Vol. 14, 177-192, 2010.

12. Zunoubi, M. R. and J. Payne, "Analysis of 3-dimensional electromagnetic fields in dispersive media using CUDA," Progress In Electromagnetics Research M, Vol. 16, 185-196, 2011.

13. Michea, D. and D. Komatitsch, "Accelerating a three-dimensional finite-difference wave propagation code using GPU graphics cards," Geophysical Journal International, Vol. 182, No. 1, 389-402, 2010.

14., NVIDIA Corporation, "NVIDIA CUDA C programming guide,", Version 3.2, 2010.