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Abstract—Three distinctively different implementations of convolu-
tional perfectly matched layer for the FDTD method on CUDA enabled
graphics processing units are presented. All implementations store ad-
ditional variables only inside the convolutional perfectly matched lay-
ers, and the computational speeds scale according to the thickness of
these layers. The merits of the different approaches are discussed, and
a comparison of computational performance is made using complex
real-life benchmarks.

1. INTRODUCTION

Recently, graphics processing units (GPUs) have become a source
of computational power for the acceleration of scientific computing.
GPUs provide enormous computational resources at a reasonable
price, and are expected to continue their performance growth in the
future. This makes GPUs a very attractive platform on which to
run electromagnetic simulations. The FDTD method [1] in particular
has been successfully accelerated on GPUs, showing excellent speedup
in comparison to codes executed on central processing units (CPUs).
Some early works reporting the use of GPUs for FDTD computations
include [2], where a speedup factor of 7.71 over a CPU code was
obtained in the case of a 2D simulation, and [3], where a successful
implementation of a 3D code was reported.
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In 2006, NVIDIA released the compute unified device architecture
(CUDA) parallel programming model, allowing for much simpler im-
plementation of general purpose computations on GPUs manufactured
by this company. Different implementation techniques and code opti-
mization strategies for the FDTD method in CUDA are discussed in
detail in [4–6]. Unfortunately, these works do not consider absorbing
boundary conditions (ABCs), which are essential for the application
of the FDTD method to the radiation and scattering problems in un-
bounded domains.

Among the different possible ABCs, the convolutional perfectly
matched layer (CPML) [7] is currently the state of the art, providing
the best absorption properties and thus the most accurate simulation
results. Although some studies on implementation of the CPML on
GPUs also exist, they suffer from a lack of implementation details,
and none show any kind of comparison of different implementation
strategies. In [8], the CPML updates were implemented by extending
the computation over the whole domain using zero update coefficients
outside the PML regions. Using this approach, a speedup factor
of 6.6 over a CPU code was reported. The drawback of such an
approach is that the PML variables need to be stored over the whole
domain, wasting a lot of memory resources. In [9, 10], CPMLs were
implemented on a GPU in the case of a 2D FDTD code developed
for radio coverage prediction purposes. The thickness of the PML
was fixed to 16 cells to match the optimal size of CUDA thread
blocks. This may not be a problem in the 2D case, but in the 3D
case all added PML cells significantly increase the total number of
cells in the simulation. In [11], performance of the standard Yee-
FDTD method with implemented CPMLs is reported for the sake
of comparison to the FADI-FDTD GPU code. Although details of
the implementation were not described, a speedup factor of 18.51
over a CPU code was reported. Unfortunately, the implementation
suffers from low simulation throughput expressed in Mcells/s. GPU
implementation of the FDTD method including CPML in the case of
dispersive media is mentioned in [12], but implementation details are
not given.

Valcarce et al. [9] state that dividing the computation into several
kernels for the different parts of the scenario is more suitable than
having one single kernel computing the whole environment, because a
single kernel would suffer from so called thread divergence. However,
no actual comparison of these implementation strategies is presented.
In this paper we show that the thread divergence is, in fact, not a
big problem, and is actually more than compensated by the fact that
some data can be reused and transactions to the slow global memory
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are avoided.
One of the features of PMLs is that the user has a simple way to

make a trade-off between the accuracy and the computational burden
by adjusting the number of PML cells. However, this is only possible if
the implementation does not have a fixed number of PML cells, and the
computational cost scales according to the number of cells. This is not
necessarily the case for GPU implementations. In [13], for example,
a shorter simulation time is actually reported in the case where the
thickness of the PML is set to 16 cells instead of 10. Moreover, since
the amount of memory available on the GPU is often the limiting factor
for the simulation size, the PML implementation should only store
variables inside the PMLs. In this paper we present three possible
implementations of the CPML in CUDA, all of which have the above-
mentioned properties.

The rest of this paper is organized as follows: Section 2 gives
a short overview of programming in CUDA C, which is used in our
GPU implementations; three different implementation strategies for
the CPML are explained in detail in Section 3; Section 4 evaluates
computational efficiency of the implementation strategies based on
performance in complex real-life benchmarks; and finally, conclusions
are drawn in Section 5.

2. CUDA PROGRAMMING MODEL

CUDA enabled GPUs can be programmed using CUDA C, which is
a subset of the C programming language with some extensions. In
this framework, the pieces of code to be executed on the GPU are
written as so called kernels. The kernels are executed in parallel by
several threads in a single-instruction, multiple-data (SIMD) fashion.
For devices of compute capability 2.0 or higher, concurrent kernels can
also be launched, which represents a multiple-instructions, multiple-
data (MIMD) parallel model. In this contribution, we consider solely
SIMD implementations of the CPML which run on larger number of
available GPU devices.

Contrary to CPU programming, CUDA threads are very
lightweight, and a large number of threads is actually needed to
obtain good multiprocessor occupancy and to hide memory access
latency. The threads are divided into thread blocks, which can be
one, two, or three-dimensional arrays. The threads within a block
can be synchronized, and they can co-operate by exchanging data
using fast shared memory. The number of threads in a block is
limited, since all threads of a block are expected to reside on the same
streaming multiprocessor and must share the limited resources of that
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processor [14].
Several thread blocks are executed in parallel on the different

processors of the GPU. The thread blocks are logically organized into
a one- or two-dimensional grid of blocks. The way in which the
threads are organized into blocks (and grid of blocks) is called the
execution configuration, and it can have a significant impact on the
computational efficiency of the program. For instance, it affects the so
called multiprocessor occupancy, which is the ratio between the number
of active warps (groups of 32 threads) and the theoretical maximum
amount of active warps on a multiprocessor.

Each thread can have local variables stored into fast memory called
registers. All threads can also read and write the global memory, but
access to this memory has a very high latency. Parts of the global
memory can also be bound to so called textures. Texture memory is
cached, so that a read from the texture memory causes a read from
the global memory only in a case of a cache miss.

As Kim et al. [5] point out, the FDTD algorithm has a very
low operational intensity, which is the amount of floating point
operations per byte of data transferred from the global memory.
Therefore, optimizing the arithmetic instructions or maximizing the
multiprocessor occupancy are not very efficient means of optimizing
the FDTD code. Instead, it is essential to minimize the number of
transactions from the slow global memory by reusing data with the
help of shared memory or registers.

3. IMPLEMENTATION DETAILS

In this section, we present three different approaches to implementing
CPML in CUDA. We shall, for brevity, look at the update of Ex

component only. Handling of other E-field components, as well as
all the H-field components, is completely analogous.

In the FDTD method with CPMLs, the following update equation
is used to compute the Ex component on time step n + 1/2:

Ex|n+1/2
i+1/2,j,k = Ca|i+1/2,j,kEx|n−1/2

i+1/2,j,k

+Cb|i+1/2,j,k

(Hz|ni+1/2,j+1/2,k −Hz|ni+1/2,j−1/2,k

κyj∆y

−
Hy|ni+1/2,j,k+1/2−Hy|ni+1/2,j,k−1/2

κzk
∆z

+ΨEx,y |ni+1/2,j,k−ΨEx,z |ni+1/2,j,k

)
. (1)

Similar equations can be written for other E- and H-field components
(for details see [1]). Here Ca and Cb are the update coefficients
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depending on the material in the cell and on the time-step size. This
formulation is valid everywhere in the extended grid, including the
PML regions. However, outside of the PML slabs ΨEx,y and ΨEx,z are
zero, and the coordinate stretching variables κ are equal to one.

The Ψ variables represent discrete convolution, and introduce the
damping of the waves inside the PMLs. At each time step ΨEx,y is
updated as follows:

ΨEx,y |ni+1/2,j,k = byjΨEx,y |n−1
i+1/2,j,k

+cyj

(
Hz|ni+1/2,j+1/2,k −Hz|ni+1/2,j−1/2,k

∆y

)
. (2)

It is non-zero only inside PML slabs that terminate y-normal
boundaries, and the update coefficients byj and cyj depend only on the
distance from the PML interface in the boundary normal direction.

Similarly, ΨEx,z is only non-zero inside z-normal PML slabs. In
other words, two non-zero Ψ variables exist inside each PML slab, and
where two or three PML slabs overlap, four or six Ψ variables exist,
respectively. This is the potential source of the thread divergence in
the update kernels, as the amount of work which has to be done varies
depending on spatial location.

The fraction of the CUDA code implementing the Ex update (1)
without the Ψ variables is presented in Figure 1. Here sy and sz
are regions of the shared memory where the Hy and Hz variables,
respectively, have been loaded, ijk is the global index of this Ex

component, matindx is the vector containing the material indices,
shmidx is an index in the shared memory, and THREADSZ is the number
of threads in a block in the z direction.

Figure 1. CUDA implementation of the Ex component update.

Update of the Ey and Ez components is done in the same kernel,
which enables us to reuse the H-field variables from the fast shared
memory. Textures are used to fetch the update coefficients, as well as
invdy and invdz containing 1/∆y and 1/∆z, respectively.

The domain is divided between the threads so that each thread
takes care of updating the E-field variables for single, fixed j and k,
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Figure 2. Arrangement of thread blocks.

Figure 3. CUDA computation of ΨEx,y in the combined updates
approach.

but for all i. That is, the kernel contains a for loop, which iterates
through the domain in the x direction. This arrangement is illustrated
in Figure 2, where the grey rectangles represent the thread blocks. The
number of thread blocks depends on the domain size, and is usually
much larger than in the figure.

To obtain the halo for the updates, the thread blocks actually
have an overlap so that some threads are only involved in loading the
data, but not in performing the update. This is illustrated in Figure 2,
where the E- and H-field halos related to thread block (1, 1) in the
grid are shown. Size of the thread block in the figure is 16× 16, and it
updates 15× 15 cells.

Next we shall look at different possible approaches for
implementing the CPML updates in the GPU-accelerated FDTD code.

3.1. Approach 1: Combined Updates

First we consider an approach where the Ψ variables are updated by
the same kernel as the respective E- or H-field. The benefit of this
approach is clear: it enables maximal data reuse, as the E- and H-field
values and the material parameters can be reused while performing
the Ψ variable updates. The code performing the ΨEx,y update of
Equation (2) is shown in Figure 3, where the data in the shared memory
region sz appearing in the code of Figure 1 is reused, as well as the
coefficient Cb. The update coefficients b and c are obtained using
textures.



Progress In Electromagnetics Research M, Vol. 19, 2011 67

Not only do we avoid several loads from the global memory, but
this approach also avoids some stores as the updated Ex component
is written to the global memory only after the contributions of the Ψ
variables are added. The drawback of this approach is the potential
thread divergence: some of the threads in the block can update cells
that are inside some PML slab, while some other threads may update
cells that are not. The divergent threads are handled in hardware by
the serialization of calculations, which can cause loss of performance in
general. But in this case, when some threads update the Ψ variables,
the threads related to cells that do not belong to the same PML slab
are simply idle. Moreover, the PML update is a simple calculation
taking only a very short time, after which the execution of the threads
converges again [14].

3.2. Approach 2: Single Kernel Updating All PML Regions

We also wanted to test approaches where such thread divergence is
minimal to see if any speedup would be gained. To this end, the
domain was divided into PML regions so that each region consists
solely of either one, two or three overlapping PML slabs (see Figure 4).
If all six boundaries of the cubic domain are terminated by the PMLs,
there are 3× 3× 3− 1 = 26 of these regions. Each of the PML regions
is then handled by one or more thread blocks, so that the threads are
organized in the yz plane, and they iterate in the x direction.

There are couple of difficulties related to this approach. Finding
the index of the FDTD cell that a thread is updating is no longer trivial
as the location of the corner of the region must be known. The indices

3 2 3

212

3 2 3

Figure 4. Division of the domain into regions. The number of
overlapping PML slabs is also indicated.
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of the region corners were therefore stored to texture memory, from
which they were fetched by each thread to compute the cell index.

Moreover, since we want to launch the thread blocks updating all
the regions simultaneously, the kernel has to include conditionals to
decide, for example, which Ψ variables need to be updated. However,
thread divergence is still minimal despite this conditional execution
because all threads in the same thread block update the same number
of Ψ variables.

3.3. Approach 3: Specialized Kernel Updating Each PML
Boundary

The performance of Approach 2 was not as good as Approach 1 in
computational tests (see next Section). Therefore we implemented
one more approach, where the kernels do not include such conditional
execution as Approach 2. Instead, a specialized kernel is launched for
each of the boundaries, which means that each kernel updates exactly
two Ψ variables.

Execution configuration is as follows. Each thread is given an
index in the boundary surface, and it iterates through the PML slab
in the boundary normal direction. The update procedure is shown in
Figure 5.

Figure 5. CUDA computation of ΨEx,y in the specialized kernels
approach.

To update each Ψ variable we need two H-field variables to
compute the derivative in the boundary normal direction. Since the
kernel also iterates in the boundary normal direction, one of those can
be reused in the next step. There is no need to share these values
between the threads and so the H-field variables are stored in registers
(hz1 and hz0 in the code).

One major issue to be considered when programming in CUDA is
coalesced memory access. The minimum size of a memory transaction
in the current CUDA enabled devices is 32 bytes [14]. Therefore,
if the threads access 4 byte floating point variables in a scattered
manner, a 32 byte transaction is issued for each variable, and the
effective memory throughput is divided by 8. However, if we meet
certain restrictions (which depend on the version of the CUDA enabled
GPU device), several memory transactions performed by threads in
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the same warp can be grouped together into so-called coalesced access.
In general this means that threads with neighbouring indices should
access neighbouring data in the global memory.

Our E- and H-field data is organized in z-fastest order. As the
threads are organized in yz and xz planes in the case of x-normal
and y-normal boundaries respectively, the coalesced access is easy to
achieve in these cases by simply assigning the cells to the threads in z-
fastest order. However, things become difficult in the case of z-normal
boundary, as the threads should be organized in the xy plane.

Because of the uncoalesced access, in initial tests measured
performance was 7.6 times worse for the kernels updating PML slabs
terminating z-normal boundaries compared to those updating x- or
y-normal boundaries. The overall effect on code performance was
devastating, even though the PML regions only corresponded to a
relatively small portion of the computational domain.

For this reason we decided to design a different type of kernel for
the z-normal boundaries. We can exploit the fact that the PML also
has a dimensionality in the z direction, and assign each thread block a
piece of xy plane so that the size of the block exceeds the thickness of
the PML. The threads then load the field variables into shared memory
in a coalesced manner, and each thread then updates the Ψ variables
using the data from the shared memory. The resulting arrangement of
the thread blocks is shown in Figure 6.

Y 

X

 Z

Figure 6. Arrangement of thread blocks for PML updates on x-
normal, y-normal, and z-normal boundaries in specialized kernels
approach (exploded view).
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Notice, that the different kernels update the same field values on
the overlapping slabs. Therefore, the kernels cannot be launched in
parallel even on devices with high enough compute capability, since
this would result in a race condition.

4. NUMERICAL RESULTS

Next we present the numerical results from benchmarks performed
on a Tesla C1060 GPU having 30 streaming multiprocessors (240
CUDA cores) and 4GB memory, and a computer having two dual core
Opteron 2.4GHz processors and 16 GB memory. Since all the described
approaches implement the same update equations, the results are the
same within single precision floating point accuracy. The methods
were found to give the correct results when comparing against a
commercially available solver, and we therefore look only at the speed
of computations. We consider the effective simulation speed, so that
the PML cells are not included in the cell count of the computational
domain. We report the peak speed measured over 10 second intervals,
which was found to be a fairly stable measure in the sense that results
in different runs usually differ very little.

4.1. Example 1: Cubic Domain

First we consider a simple test case to see what effect the size of the
computational domain has on the simulation speed. We used a vacuum
filled cubic domain of varying size with 10 cells thick CPML on all six
boundaries of the domain.

We also wanted to determine the optimal size of the thread
blocks. Since the field variables are stored in the global memory
in z-fastest order, a larger thread block size in the z direction can
potentially reduce the number of memory transactions. On the other
hand, a larger block size can increase the slowdown caused by thread
divergence.

Figure 7 shows the simulation speeds using the different
approaches, i.e., (A1) combined updates, (A2) single kernel updating
all PML regions, (A3) specialized kernel updating each PML boundary,
and using a thread block size of 16×16 and 32×16. On small domains
the smaller thread block size performs slightly better in all approaches,
but the difference is not very significant. However, when the size of
the domain is 2003 or larger, the larger thread block size performs
significantly better. For this reason, the thread block size 32× 16 was
chosen for the rest of the presented examples.
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Figure 7. Simulation speed as a function of the domain size for
different PML implementations: (A1) combined updates, (A2) single
kernel updating all PML regions, (A3) specialized kernel updating each
PML boundary.

Figure 8. The full body model and the MRI head coil.

4.2. Example 2: MRI Coil

As the second test case we consider the interaction of electromagnetic
field with the human body. The model before voxeling is shown in
Figure 8. As seen, the model includes a large number of different
materials. Notice that as the head is the primary target of interest in
such a simulation, PMLs could also be used to terminate the torso. In
this case the whole torso was voxeled, but a more dense grid was used
in the area containing the head. Harmonic excitation was introduced
by 8 different edge sources positioned around the MRI coil. The size
of the grid was 312 × 328 × 325, resulting in 33.4 × 106 cells in the
simulation. As the extraction of simulation results can greatly reduce
simulation speeds, we monitored only one edge during this test.

We compared the performance of the implementations when a
variable number of PML cells was added to each of the six boundaries
of the computational domain. The results are shown in the Figure 9.
For comparison, the simulation speed using a GPU implementation of
the first order Mur analytical ABC instead of PMLs was 500 Mcells/s.
Speedup factors between 21.0 and 36.6 were observed when compared
to a CPU implementation of the FDTD method with PMLs.
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Figure 9. Simulation speed in the MRI example for different PML
implementations: (A1) combined updates, (A2) single kernel updating
all PML regions, (A3) specialized kernel updating each PML boundary.

Figure 10. Magnitude of the magnetic field on the surface of the car.

4.3. Example 3: Car

The next test case is a computation of the scattering of a plane wave
from a car. The simulation grid was 519×239×159 ≈ 19.7×106 cells.
The voxeling of the car model can be seen in Figure 10, as well as the
magnitude of the simulated magnetic field on the surface of the car.
The simulation speeds using the different PML implementations for a
variable number of PML cells are shown in Figure 11. Simulation speed
using the Mur ABC was 287 Mcells/s, and speedup factors compared
to the CPU implementation varied between 16.5 and 21.1.
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Figure 11. Simulation speed in the car model example for different
PML implementations: (A1) combined updates, (A2) single kernel
updating all PML regions, (A3) specialized kernel updating each PML
boundary.

In general, the simulation speeds in this example were slower than
in the previous examples, which was mostly caused by the plane wave
excitation implemented as a set of separately updated edge sources.
Moreover, the simulation domain is quite small in the z direction, which
is not optimal in view of the previous results (see Figure 7).

5. CONCLUSIONS

In this paper, we have presented details of three distinctively different
implementations of CPML for the 3D FDTD method on CUDA
enabled GPUs. Efficiency of the implementations was evaluated
using complex real-life benchmarks. All the implementations have the
following attractive properties: the additional variables needed for the
CPML updates are stored only inside the PMLs, the number of PML
cells can be chosen freely, and the computational cost scales according
to the PML thickness.

In Approach 1, updates of PML variables were performed in the
same kernel with the respective E- or H-field update. Some thread
divergence occurs if only some of the threads in a thread block update
cells inside a PML. However, such divergence is not a big problem
as the CPML updates include only very few floating point operations,
and the execution of threads converges after the update. This approach
also results in maximal reuse of the data loaded from the slow global
memory. This is a big advantage as data transfer is the bottleneck in
GPU computations with low arithmetic intensity algorithms such as
the FDTD method. This approach turned out to be the most efficient
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in almost all cases.
Approach 2 is based on dividing the domain into regions having

a uniform number of overlapping PML slabs. The thread blocks
performing the PML updates can be launched in parallel without the
risk of a race condition, and thread divergence is minimal. However,
the kernel is more complicated than in other approaches, and it turns
out to be less efficient in all numerical benchmarks.

Finally, in Approach 3 specialized kernels were launched
separately for each of the six sides of the domain. The kernels have to
launch sequentially to avoid a race condition because different kernels
update the same field variables in regions where several PML slabs
overlap. A drawback of this approach compared to Approach 1 is
that less data can be reused. On the other hand, the kernels are
now less complicated and use less registers compared to the previous
approaches, which can lead to a possible increase in multiprocessor
occupancy. Moreover, there is less thread divergence. The performance
of this approach is generally slightly worse than Approach 1, even
though it does perform slightly better in some cases (see Figure 11).

In view of our findings, Approach 1 can be recommended
as the way of implementing CPML in CUDA. The computational
performance of this approach was generally better than the presented
alternatives, and it is also the simplest one to implement. It is a topic
of further study if a more efficient implementation could be created for
the devices of compute capability 2.0 or higher (the Fermi generation
GPUs), which support caching for the global memory, and are capable
of launching different kernels concurrently.
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