Vol. 31
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-06-22
Spectral-Domain Formulation of Electromagnetic Scattering from Circular Cylinders Located Near Periodic Cylinder Array
By
Progress In Electromagnetics Research B, Vol. 31, 219-237, 2011
Abstract
This paper considers a periodic circular cylinder array with additional cylinders and formulates the electromagnetic scattering problem of this imperfectly periodic structure. Generally, the fields in imperfectly periodic structures have continuous spectra, and the spectral-domain approaches require appropriate discretization schemes in many cases. The present formulation is based on the pseudo-periodic Fourier transform and the discretization scheme can be considered only inside the Brillouin zone.
Citation
Koki Watanabe, and Yoshimasa Nakatake, "Spectral-Domain Formulation of Electromagnetic Scattering from Circular Cylinders Located Near Periodic Cylinder Array," Progress In Electromagnetics Research B, Vol. 31, 219-237, 2011.
doi:10.2528/PIERB11052504
References

1. Petit, R., Electromagnetic Theory of Gratings,, Springer Springer, 1980.
doi:10.1007/978-3-642-81500-3

2. Watanabe, K. and K. Yasumoto, "Two-dimensional electromagnetic scattering of non-plane incident waves by periodic structures," Progress In Electromagnetics Research, Vol. 74, 241-271, 2007.
doi:10.2528/PIER07050902

3. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, 1990.

4. Roussel, H., W. C. Chew, F. Jouvie, and W. Tabbara, "Electromagnetic scattering from dielectric and magnetic gratings of fibers --- a T-matrix solution," Journal of Electromagnetic Waves and Applications, Vol. 10, No. 1, 109-127, 1996.
doi:10.1163/156939396X00252

5. Yasumoto, K. and K. Yoshitomi, "E±cient calculation of lattice sums for free-space periodic Green's function," IEEE Trans. Antennas Propagat., Vol. 47, No. 6, 1050-1055, 1999.
doi:10.1109/8.777130

6. Abramowitz, M. and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, New York.