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Abstract—This paper considers a periodic circular cylinder array
with additional cylinders and formulates the electromagnetic scattering
problem of this imperfectly periodic structure. Generally, the fields
in imperfectly periodic structures have continuous spectra, and the
spectral-domain approaches require appropriate discretization schemes
in many cases. The present formulation is based on the pseudo-periodic
Fourier transform and the discretization scheme can be considered only
inside the Brillouin zone.

1. INTRODUCTION

Periodic structures are widely used in microwave, millimeter-wave, and
optical wave regions, and many analytical and numerical approaches
have been developed to analyze the scattering problems. The Floquet
theorem asserts that, when a plane-wave illuminates a periodic
structure, the scattered fields have discrete and equal interval spectra
in the wavenumber space. This implies that the field components
are pseudo-periodic (namely, each field component is a product of
a periodic function and an exponential phase factor) and can be
expressed in the generalized Fourier series expansions [1]. Also, the
analysis region can be reduced to only one periodicity cell. However,
when the incident field is not the plane-wave or the structural
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periodicity is collapsed even if locally, the Floquet theorem is no longer
applicable and the analysis regions of the spatial-domain approaches
have to generally cover all the scattering structure under consideration.

A spectral-domain formulation of the electromagnetic scattering
from periodic structures with non-plane incident waves has been
proposed in Ref. [2] by introducing the pseudo-periodic Fourier
transform (PPFT). When the incident field is not the plane-wave, the
fields in the periodic structures generally have continuous spectra in
the wavenumber space, and an appropriate discretization is necessary
for the spectral-domain approaches. PPFT is an extension of the
periodic Green function [1], which is defined by the radiation field
from periodic line-source array with phase shift, and converts any
function to a pseudo-periodic function. The transformed incident
field can be expressed in the plane-wave expansion and, therefore, the
scattered fields for each plane wave incidence can be calculated by using
the conventional approaches based on the Floquet theorem. PPFT
introduces a transform parameter, which determines the wavenumber
of each plane-wave, and the inverse transform is given by integrating
with respect to the transform parameter over the Brillouin zone. It
is well known that the fields in the periodic structures have infinite
number of non-smooth points in the wavenumber space, which are
called the Wood anomalies. However, PPFT makes us possible to
consider an appropriate discretization scheme in the wavenumber space
only inside the Brillouin zone.

This paper considers the two-dimensional electromagnetic scatter-
ing from some circular cylinders located near a periodic array of cir-
cular cylinders and presents a spectral-domain formulation based on
the recursive transition-matrix algorithm (RTMA) [3] with the help
of PPFT. The original RTMA is known as a very effective approach
to the scattering from finite number of circular cylinders. It uses the
cylindrical-wave expansions to express the field components and the
boundary conditions at the cylinder surfaces are derived by Graf’s ad-
dition theorem. RTMA with the lattice sums technique has been pro-
posed for the scattering problem of a perfectly periodic cylinder array
for plane-wave incidence [4], and a practical computation becomes pos-
sible by an integral representation of the lattice sums [5]. The present
formulation applies the RTMA with the lattice sums technique to the
scattering from the periodic cylinder array and the original RTMA to
the scattering from the additional cylinders. The fields outside the
cylinders are transformed by PPFT and the plane-wave amplitudes
are matched by the technique for multilayer structure. The present
formulation requires also an appropriate discretization in the Brillouin
zone.
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Figure 1. Structure under consideration.

2. SETTINGS OF THE PROBLEM

This paper considers the electromagnetic scattering problem of a
circular cylinder array, in which a finite number of circular cylinders
locates near a periodic array of circular cylinders schematically shown
in Figure 1. All the cylinders are infinitely long in the z-direction and
situated parallel to each other. The periodic cylinder array consists of
identical cylinders with homogeneous and isotropic medium described
by the permittivity εp and the permeability µp, and the radius is ap.
One cylinder in the periodic array is located at (x, y) = (xp, yp) and
the other cylinders are periodically spaced with a common distance d
(d > 2ap) in the x-direction. We denote yp + ap and yp − ap by hp,1

and hp,2, respectively. The number of cylinders located near the array
is denoted by M , and the mth-cylinder (m = 1, 2, . . . , M) is described
by the permittivity εc,m, the permeability µc,m, the radius ac,m, and
the center position (x, y) = (xc,m, yc,m). We denote max{yc,m + ac,m}
and min{yc,m − ac,m} by hc,1 and hc,2, respectively. The parameters
are chosen not to overlap each other and we suppose hp,1 < hc,2. The
surrounding region is filled by a lossless, homogeneous, and isotropic
material with the permittivity εs and the permeability µs. The
fields are supposed to be uniform in the z-direction and have a time-
dependence in exp(−iωt). Therefore, two-dimensional problem is here
considered, and two fundamental polarizations are expressed by TM
and TE, in which the electric and magnetic fields are respectively
perpendicular to the z-axis. We denote the z-component of electric
field for TM-polarization and the z-component of magnetic for TE-
polarization by ψ(x, y), and show formulation for both polarizations



222 Watanabe and Nakatake

simultaneously. The incident field is supposed to illuminate the
scatterers from the upper or lower regions and there exists no source
inside the scatterer region hp,2 ≤ y ≤ hc,1.

3. TOOLS FOR THE FORMULATION

3.1. Pseudo-periodic Fourier Transform

The definition of PPFT and basic properties are presented in Ref. [2].
Let f(x) be a function of x, and d be a positive real constant. Then
the transform is defined by:

f̄(x; ξ) =
∞∑

m=−∞
f(x−md)eimdξ (1)

which is implicitly assumed to converge. This transform introduces a
transform parameter ξ, and the inverse transform is formally given by
integrating on ξ as

f(x) =
1
kd

∫ kd/2

−kd/2
f̄(x; ξ) dξ (2)

where kd = 2π/d. The transformed function f̄(x; ξ) has a pseudo-
periodic property with the pseudo-period d in terms of x: f̄(x −
md; ξ) = f̄(x; ξ)e−imdξ for any integer m. Also, f̄(x; ξ) has a periodic
property with the period kd in terms of ξ: f̄(x; ξ −mkd) = f̄(x; ξ) for
any integer m.

3.2. Expansion Bases

Since the region outside the cylinders is homogeneous, the
fields transformed by PPFT can be expressed in the plane-wave
expansions [2]. The basis functions of plane-wave expansion are here
given by column matrices f (±)(x, y; ξ), in which the nth-component is
given as (

f (±)(x, y; ξ)
)

n
= ei(αn(ξ)x±βn(ξ)y) (3)

with

αn(ξ) = ξ + nkd (4)

βn(ξ) =
√

ks
2 − αn(ξ)2 (5)

where ks denotes the wavenumber in the surrounding medium. The
superscripts (+) and (−) indicate the column matrices corresponding



Progress In Electromagnetics Research B, Vol. 31, 2011 223

to the plane-waves propagating in the positive and the negative y-
direction, respectively. Let (x, y) = (xq, yq) and (x, y) = (xr, yr) be
the reference points of the bases. Then the transform relation of the
plane-wave bases is given as

f (±)(x−xq, y−yq; ξ)=F(xr−xq,±(yr−yq); ξ) f (±)(x−xr, y−yr; ξ) (6)

where F(x, y; ξ) denotes the diagonal matrices whose (n, m)-entries are
given by

(F(x, y; ξ))n,m = δn,mei(αn(ξ)x+βn(ξ)y) (7)

for the Kronecker delta δn,m.
In the formulation, the cylindrical-wave expansions are also used

to express the fields outside the cylinders. The bases functions
are given by column matrices g(Z)(x, y) whose nth-components are
expressed as (

g(Z)(x, y)
)

n
= Zn(ksρ(x, y))einφ(x,y) (8)

with

ρ(x, y) =
√

x2 + y2 (9)
φ(x, y) = arg(x + iy) (10)

where Z specifies the cylindrical functions associating to the
cylindrical-wave bases in such a way that Z = J denotes the Bessel
function and Z = H(1) denotes the Hankel function of the first
kind. Graf’s addition theorem [6] yields the transform relations for
converting the reference points of the bases. Let (xq, yq) and (xr, yr)
be the reference points of the cylindrical-wave bases. Then, when (x, y)
is inside a circle with center (xr, yr) and radius ρ(xq − xr, yq − yr), the
transform relation is given by

g(Z)(x− xq, y − yq) = G(Z)(xr − xq, yr − yq)g(J)(x− xr, y − yr) (11)

where G(Z)(x, y) denotes the Toeplitz matrix whose (n,m)-entries are
given by (

G(Z)(x, y)
)

n,m
= Zn−m(ksρ(x, y))ei(n−m)φ(x,y). (12)

The plane-wave is known to be expressed by a superposition of
the cylindrical-waves concerning with the Bessel function and the
conversion relation is given as

f (±)(x, y; ξ) = A(±)(ξ)g(J)(x, y) (13)

with (
A(±)(ξ)

)
n,m

=
(

iαn(ξ)± βn(ξ)
ks

)m

. (14)
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Also, PPFT is applied to the cylindrical-waves concerning with the
Hankel function of the first kind, and we can derive the following
relation:

∞∑

l=−∞
g(H(1))(x− ld, y)eildξ =

{
B(+)(ξ)f (+)(x, y; ξ) for y ≥ 0
B(−)(ξ)f (−)(x, y; ξ) for y < 0

(15)

with (
B(±)(ξ)

)
n,m

=
2

dβm(ξ)

(−iαm(ξ)± βm(ξ)
ks

)n

(16)

3.3. Transition-matrix of Isolated Cylinder

Here, we assume that one cylindrical scatterer is located at the origin.
The permittivity and the permeability of the surrounding medium are
εs and µs, respectively, and the cylinder is with radius am, permittivity
εm, and permeability µm. An incident fields ψ(i)(x, y), which are
expanded in series of cylindrical waves concerning with the Bessel
functions as

ψ(i)(x, y) = g(J)(x, y)ta(i), (17)
illuminates the cylinder. The superscript t denotes the transpose and
a(i) is a column matrix generated by the expansion coefficients. Since
the scattered field from the cylinder consists of the outgoing waves, it
can be expressed in

ψ(s)(x, y) = g(H(1))(x, y)ta(s) (18)

where a(s) is a column matrix generated by the expansion coefficients.
Then, the transition-matrix (T-matrix) Tm is defined to relate the
coefficients of incident and scattered fields in the following form:

a(s) = Tma(i). (19)
The (n, l)-components of Tm are given by

(Tm)n,l =δn,l
ζsJn(ksam)J ′n(kmam)−ζmJ ′n(ksam)Jn(kmam)

ζmH
(1)′
n (ksam)Jn(kmam)−ζsH

(1)
n (ksam)J ′n(kmam)

(20)

for TM-polarization, and

(Tm)n,l =δn,l
ζmJn(ksam)J ′n(kmam)−ζsJ

′
n(ksam)Jn(kmam)

ζsH
(1)′
n (ksam)Jn(kmam)−ζmH

(1)
n (ksam)J ′n(kmam)

(21)

for TE-polarization, where ζm and ζs denote the characteristic
impedances of the cylinder and the surrounding media, respectively,
and km denotes the wavenumber in the cylinder medium. In the
following formulation, the subscript “m” is replaced by “p” for the
cylinders in the periodic cylinder array and “c, m” for the mth-cylinder
in the additional cylinders.
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4. FORMULATION

4.1. Scattering by Periodic Cylinder Array

This subsection presents a derivation process for the scattering-matrix
(S-matrix) of the periodic cylinder array. Since no source exists in
hp,1 ≥ y ≥ hp,2, the incident field for the periodic array ψ

(i)
p (x, y)

consists of the waves propagating in the negative y-direction from the
plane y = hp,1 and the waves propagating in the positive y-direction
from the plane y = hp,2. Therefore, the incident field transformed by
PPFT is given in the plane-wave expansion as

ψ̄(i)
p (x; ξ, y) = f (−)(x, y − hp,1; ξ)tψ̄(−)(ξ, hp,1)

+f (+)(x, y − hp,2; ξ)tψ̄(+)(ξ, hp,2) (22)

where ψ̄(+)(ξ, y) and ψ̄(−)(ξ, y) denote the column matrices of the
amplitudes corresponding to the plane-waves propagating in the
positive and the negative y-directions, respectively. Applying the
inverse transform given by Equation (2) and using the relations (6)
and (13), the incident field ψ

(i)
p (x, y) is expressed in the cylindrical-

wave expansion for the reference point (x, y) = (xp + νd, yp) (center of
the νth-cylinder) as

ψ(i)
p (x, y) = g(J)(x− xp − νd, y − yp)ta(i)

p,ν (23)

where the coefficient matrix a(i)
p,ν is given by

a(i)
p,ν =

1
kd

∫ kd/2

−kd/2
ā(i)

p (ξ)eiνdξdξ (24)

with

ā(i)
p (ξ) = A(−)(ξ)tF(xp, ap; ξ)ψ̄(−)(ξ, hp,1)

+A(+)(ξ)tF(xp, ap; ξ)ψ̄(+)(ξ, hp,2). (25)

On the other hand, the scattered field for the periodic array
ψ

(s)
p (x, y) consists of the outward propagating waves from the cylinders,

and the scattered field outside the cylinders is given in the following
form:

ψ(s)
p (x, y) =

∞∑

l=−∞
g(H(1))(x− xp − ld, y − yp)ta(s)

p,l (26)

where a(s)
p,l denotes the column matrix generated by the expansion

coefficients of the scattered waves from the lth-cylinder. Applying
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PPFT to the scattered field and using the relations (15) and (6), we
may obtain

ψ̄(s)
p (x; ξ, y)

=





f (+)(x, y−hp,1; ξ)tF(−xp, ap; ξ)B(+)(ξ)tā(s)
p (ξ) for y≥hp,1

f (−)(x, y−hp,2; ξ)tF(−xp, ap; ξ)B(−)(ξ)tā(s)
p (ξ) for y≤hp,2

(27)

where the column matrix ā(s)
p (ξ) is defined by

ā(s)
p (ξ) =

∞∑
ν=−∞

a(s)
p,νe

−iνdξ. (28)

Using Equation (11), the total field near but outside the νth-
cylinder can be expressed as

ψ(x, y)

= g(J)(x− xp − νd, y − yp)t


a(i)

p,ν +
∞∑

l 6=ν
l=−∞

G(H(1))((ν−l)d, 0)ta(s)
p,l




+g(H(1))(x− xp − νd, y − yp)ta(s)
p,ν . (29)

The first and the second terms on the right-hand side of Equation (29)
are given by superpositions of cylindrical-waves associating to the
Bessel function and the Hankel function of the first kind, respectively,
and they represent the incident and the scattered fields for the νth-
cylinder. As shown in the Subsection 3.3, the T-matrix Tp provides
a relation between the coefficient matrices of the incident and the
scattered fields, and we have

a(s)
p,ν = Tp


a(i)

p,ν +
∞∑

l 6=ν
l=−∞

G(H(1))((ν − l)d, 0)ta(s)
p,l


 . (30)

Multiplying an exponential function exp(−iνdξ) to Equation (30) and
summing over all integers ν, we may obtain the following relation:

ā(s)
p (ξ) =

(
T−1

p − L(ξ)
)−1 ā(i)

p (ξ) (31)

with

L(ξ) =
∞∑

l 6=ν
l=−∞

G(H(1))(−νd, 0)teiνdξ. (32)
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We consider the total field at y = hp,1, hp,2 in the plane-wave expansion
representation, and use Equations (25), (27), and (31). Then, the
relations between the amplitudes of the incoming and the outgoing
plane-waves as

(
ψ̄(+)(ξ, hp,1)
ψ̄(−)(ξ, hp,2)

)

=
[(

0 F(0, 2ap; ξ)
F(0, 2ap; ξ) 0

)
+

(
S̄p,11(ξ) S̄p,12(ξ)
S̄p,21(ξ) S̄p,22(ξ)

)]

(
ψ̄(−)(ξ, hp,1)
ψ̄(+)(ξ, hp,2)

)
(33)

with

S̄p,11(ξ) = F(−xp, ap; ξ)B(+)(ξ)t
(
T−1

p − L(ξ)
)1

A(−)(ξ)tF(xp, ap; ξ) (34)

S̄p,12(ξ) = F(−xp, ap; ξ)B(+)(ξ)t
(
T−1

p − L(ξ)
)−1

A(+)(ξ)tF(xp, ap; ξ) (35)

S̄p,21(ξ) = F(−xp, ap; ξ)B(−)(ξ)t
(
T−1

p − L(ξ)
)−1

A(−)(ξ)tF(xp, ap; ξ) (36)

S̄p,22(ξ) = F(−xp, ap; ξ)B(−)(ξ)t
(
T−1

p − L(ξ)
)−1

A(+)(ξ)tF(xp, ap; ξ). (37)

4.2. Scattering by Additional Cylinders

Next, we consider the scattering from the additional cylinders located
near the periodic array by applying original RTMA. Here, we denote
the incident field for the additional cylinders by ψ

(i)
c (x, y) and express

the transformed field in the plane-wave expansion as

ψ̄(i)
c (x; ξ, y) = f (−)(x, y − hc,1; ξ)tψ̄(−)(ξ, hc,1)

+f (+)(x, y − hc,2; ξ)tψ̄(+)(ξ, hc,2). (38)

This expression is inversely transformed and Equations (6) and (13)
are used. Then we have the cylindrical-wave expansion representation
of the incident field for the reference point (x, y) = (xc,ν , yc,ν) as

ψ(i)
c (x, y) = g(J)(x− xc,ν , y − yc,ν)ta(i)

c,ν (39)
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where the coefficient matrix a(i)
c,ν is given by

a(i)
c,ν =

1
kd

∫ kd/2

−kd/2

(
A(−)(ξ)tF(xc,ν , hc,1 − yc,ν ; ξ)ψ̄(−)(ξ, hc,1)

+A(+)(ξ)tF(xc,ν , yc,ν − hc,2; ξ)ψ̄(+)(ξ, hc,2)
)

dξ. (40)

The scattered field for the additional cylinders is given by the sum
of the outgoing waves from the cylinders as

ψ(s)
c (x, y) =

M∑

l=1

g(H(1))(x− xc,l, y − yc,l)ta(s)
c,l (41)

where a(i)
p,l denotes the coefficient matrix corresponding to the scattered

waves from the lth-cylinder. PPFT is applied to the scattered field and
we may obtain

ψ̄(s)
c (x; ξ, y) =

{
f (+)(x, y − hc,1; ξ)tB̃(+)

c (ξ)ã(s)
c for y ≥ hc,1

f (−)(x, y − hc,2; ξ)tB̃(−)
c (ξ)ã(s)

c for y ≤ hc,2

(42)

by using the relations (6) and (15), where the matrices B̃(+)
c (ξ) and

B̃(−)
c (ξ) are defined by

B̃(±)
c (ξ) =

(
B(±)

1

′
(ξ) . . . B(±)

M

′
(ξ)

)
(43)

with
B(+)

m

′
(ξ) = F(−xc,m, hc,1 − yc,m; ξ)B(+)(ξ)t (44)

B(−)
m

′
(ξ) = F(−xc,m, yc,m − hc,2; ξ)B(−)(ξ)t. (45)

The relation (11) is applied to the scattered field given by
Equation (41), and the total field near but outside the νth-cylinder
is expressed as

ψ(x, y) = g(J)(x− xc,ν , y − yc,ν)t


a(i)

c,ν +
M∑

m6=ν
m=1

G(H(1))(xc,ν − xc,m, yc,ν − yc,m)ta(s)
c,m




+g(H(1))(x− xc,ν , y − yc,ν)ta(s)
c,ν . (46)

The coefficient matrices of the first and the second terms on the right-
hand side are related by the T-matrix as

a(s)
c,ν = Tc,ν


a(i)

c,ν +
M∑

m6=ν
m=1

G(H(1))(xc,ν − xc,m, yc,ν − yc,m)ta(s)
c,m


 , (47)
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and this relation is also written as

ã(s)
c = C̃−1ã(i)

c (48)

with

ã(f)
c =




a(f)
c,1
...

a(f)
c,M


 (49)

C̃ =




C1,1 . . . C1,M
...

. . .
...

CM,1 . . . CM,M


 (50)

Cn,m =

{
T−1

c,n for n = m

−G(H(1))(xc,n − xc,m, yc,n − yc,m)t for n 6= m
(51)

for f = i, s. From Equations (40), (42), and (48), we may obtain the
relations between the amplitudes of the incoming and the outgoing
plane-waves in the following form:(

ψ̄(+)(ξ, hc,1)
ψ̄(−)(ξ, hc,2)

)

=
(

0 F(0, hc,1 − hc,2; ξ)
F(0, hc,1 − hc,2; ξ) 0

)(
ψ̄(−)(ξ, hc,1)
ψ̄(+)(ξ, hc,2)

)

+
1
kd

∫ kd/2

−kd/2

(
S̄c,11(ξ, ξ′) S̄c,12(ξ, ξ′)
S̄c,21(ξ, ξ′) S̄c,22(ξ, ξ′)

) (
ψ̄(−)(ξ′, hc,1)
ψ̄(+)(ξ′, hc,2)

)
dξ′ (52)

with

S̄c,11(ξ, ξ′) = B̃(+)
c (ξ)C̃−1Ã(−)

c (ξ′) (53)

S̄c,12(ξ, ξ′) = B̃(+)
c (ξ)C̃−1Ã(+)

c (ξ′) (54)

S̄c,21(ξ, ξ′) = B̃(−)
c (ξ)C̃−1Ã(−)

c (ξ′) (55)

S̄c,22(ξ, ξ′) = B̃(−)
c (ξ) C̃−1Ã(+)

c (ξ′) (56)

Ã(+)
c (ξ) =




A(+)(ξ)tF(xc,1, yc,1 − hc,2; ξ)
...

A(+)(ξ)tF(xc,M , yc,M − hc,2; ξ)


 (57)

Ã(−)
c (ξ) =




A(−)(ξ)tF(xc,1, hc,1 − yc,1; ξ)
...

A(−)(ξ)tF(xc,M , hc,1 − yc,M ; ξ)


 . (58)
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4.3. Field Decomposition

The total field ψ(x, y) is here decomposed into the known incident field
ψ(i)(x, y) and the scattered field by the periodic cylinder array without
the additional cylinders ψ(p)(x, y), and the residual field ψ(c)(x, y)
defined by ψ(x, y)−ψ(i)(x, y)−ψ(p)(x, y). The decomposed fields in the
surrounding medium satisfy the Helmholtz equation respectively, and
the transformed fields are also expressed in the plane-wave expansions.
Then the plane-wave amplitudes of the total field are expressed by the
sum of the amplitudes of the decomposed fields as

ψ̄(±)(ξ, y) = ψ̄(i,±)(ξ, y) + ψ̄(p,±)(ξ, y) + ψ̄(c,±)(ξ, y). (59)

Since the scattered fields consist of the outgoing waves from cylinders,
ψ̄(p,+)(ξ, y), ψ̄(p,−)(ξ, y), ψ̄(c,+)(ξ, y), and ψ̄(c,−)(ξ, y) vanish in y ≤
hp,2, y ≥ hp,1, y ≤ hp,2, and y ≥ hc,1, respectively.

From Equation (33), we obtain the following relations:

ψ̄(c,+)(ξ, hp,1) = S̄′p,11(ξ)ψ̄
(c,−)(ξ, hc,2) (60)

ψ̄(c,−)(ξ, hp,2) =
(
F(0, hc,2 − hp,2; ξ) + S̄′p,21(ξ)

)
ψ̄(c,−)(ξ, hc,2) (61)

with

S̄′p,11(ξ) = S̄p,11(ξ)F(0, hc,2 − hp,1; ξ) (62)

S̄′p,21(ξ) = S̄p,21(ξ)F(0, hc,2 − hp,1; ξ), (63)

where we have used(
ψ̄(p,+)(ξ, hp,1)
ψ̄(p,−)(ξ, hp,2)

)
=

(
S̄p,11(ξ) S̄p,12(ξ)
S̄p,21(ξ) S̄p,22(ξ)

) (
ψ̄(i,−)(ξ, hp,1)
ψ̄(i,+)(ξ, hp,2)

)
(64)

ψ̄(i,+)(ξ, hp,1) = F(0, 2 ap; ξ)ψ̄(i,+)(ξ, hp,2) (65)

ψ̄(i,−)(ξ, hp,2) = F(0, 2 ap; ξ)ψ̄(i,−)(ξ, hp,1) (66)

ψ̄(c,−)(ξ, hp,1) = F(0, hc,2 − hp,1; ξ)ψ̄(c,−)(ξ, hc,2). (67)

Also, from Equation (52), we obtain

ψ̄(c,+)(ξ, hc,1) = F(0, hc,1 − hp,1; ξ)ψ̄(c,+)(ξ, hp,1)

+
1
kd

∫ kd/2

−kd/2
S̄′c,12(ξ, ξ

′)ψ̄(c,+)(ξ′, hp,1)dξ′+σ1(ξ) (68)

ψ̄(c,−)(ξ, hc,2) =
1
kd

∫ kd/2

−kd/2
S̄′c,22(ξ, ξ

′)ψ̄(c,+)(ξ′, hp,1)dξ′ + σ2(ξ) (69)
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with
(

σ1(ξ)
σ2(ξ)

)
=

1
kd

∫ kd/2

−kd/2

(
S̄c,11(ξ, ξ′) S̄′c,12(ξ, ξ

′)
S̄c,21(ξ, ξ′) S̄′c,22(ξ, ξ

′)

)

·
(

ψ̄(i,−)(ξ′, hc,1)
ψ̄(i,+)(ξ′, hp,1) + ψ̄(p,+)(ξ′, hp,1)

)
dξ′ (70)

S̄′c,12(ξ, ξ
′) = S̄c,12(ξ, ξ′)F(0, hc,2 − hp,1; ξ′) (71)

S̄′c,22(ξ, ξ
′) = S̄c,22(ξ, ξ′)F(0, hc,2 − hp,1; ξ′), (72)

where we have used

ψ̄(i,+)(ξ, hc,1) = F(0, hc,1 − hc,2; ξ)ψ̄(i,+)(ξ, hc,2) (73)

ψ̄(i,−)(ξ, hc,2) = F(0, hc,1 − hc,2; ξ)ψ̄(i,−)(ξ, hc,1) (74)

ψ̄(p,+)(ξ, hc,1) = F(0, hc,1 − hc,2; ξ)ψ̄(p,+)(ξ, hc,2) (75)

ψ̄(c,+)(ξ, hc,2) = F(0, hc,2 − hp,1; ξ)ψ̄(c,+)(ξ, hp,1). (76)

Substituting Equations (69) into (60), we may derive the equation to
be solved:

ψ̄(c,+)(ξ, hp,1)− 1
kd

∫ kd/2

−kd/2
S̄′p,11(ξ)S̄

′
c,22(ξ, ξ

′)ψ̄(c,+)(ξ′, hp,1) dξ′

= S̄′p,11(ξ)σ2(ξ) (77)

Equation (77) is the Fredholm integral equation of the second kind
for ψ̄(c,+)(ξ, hp,1) to be solved and the other coefficient matrices
ψ̄(c,+)(ξ, hc,1), ψ̄(c,−)(ξ, hc,2), and ψ̄(c,−)(ξ, hp,2) are then given by
Equations (61), (68), and (69).

5. NUMERICAL EXPERIMENTS

When implementing a practical computation, the cylindrical-wave
expansions must be truncated. We denote the truncation order for the
plane-wave expansions by N that truncates the expansions from−Nth-
to Nth-order. Also, the truncation order for the cylindrical-wave
expansions is denoted by K that truncates the expansions from −Kth-
to Kth-order. As the result, for example, the sizes of matrices Ã(±)

c (ξ),
B̃(±)

c (ξ), and C̃ become M(2K +1)× (2N +1), (2N +1)×M(2K +1),
and M(2K +1)×M(2K +1), respectively. Also, the entries of matrix
L(ξ) defined by Equation (32) are known to converge very slowly. They
are called the lattice sums and direct summing does not yield effective
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values. An efficient calculation of lattice sums has been developed
by Yasumoto and Yoshitomi [5], and the (n,m)-entries of L(ξ) are
approximated as

(L(ξ))n,m

≈ 1−i

π

∫ b

0
Gm−n(τ)

[
(−1)m−nF (τ ; dks, dξ)+F (τ ; dks,−dξ)

]
dt(78)

with

F (τ, k′, ξ′) =
ei(k′

√
1−τ2+ξ′)

√
1− τ2

[
1− ei(k′

√
1−τ2+ξ′)

] (79)

Gn(τ) =
(
τ − i

√
1− τ2

)n
+

(
−τ − i

√
1− τ2

)n
(80)

τ = (1− i)t (81)

where b is a positive constant and Equation (78) provides sufficient
approximation for b À 1.

To solve Equation (77) numerically, we introduce a discretization
for the transform parameter ξ. The transformed fields are periodic
with the period kd in terms of ξ as written in Section 3.1. We
take therefore L sample points {ξl}L

l=1 only in the Brillouin zone
(−kd/2, kd/2), and the integration is approximated by an appropriate
numerical integration scheme. Then, Equation (77) is approximated
as

ψ̄(c,+)(ξl, hp,1)−
L∑

l′=1

wl′

kd
S̄′p,11(ξl)S̄′c,22(ξl, ξl′)ψ̄(c,+)(ξl′ , hp,1)

= S̄′p,11(ξl)σ2(ξl) (82)

where {wl}L
l=1 denotes the weight factor. Equation (82) can be

numerically solved, and the other coefficient matrices at the sample
points are obtained from Equation (61), (68), and (69) by applying
the same numerical integration scheme.

Here, we consider a line source excitation problem. The line source
under consideration is situated parallel to the z-axis at (x, y) = (x0, y0)
where y0 > hc,1 or y0 < hp,2. Then, the incident field is expressed as

ψ(i)(x, y) = H
(1)
0 (ksρ(x− x0, y − y0)). (83)

Using the Fourier integral representation for the Hankel function of the
first kind, the amplitudes of the transformed incident field are obtained
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as follows:
(
ψ̄(i,+)(ξ, y)

)
n

=

{
2

dβn(ξ)e
−i[αn(ξ)x0−βn(ξ)(y−y0)] for y > y0

0 for y < y0
(84)

(
ψ̄(i,−)(ξ, y)

)
n

=

{
0 for y > y0

2
dβn(ξ)e

−i[αn(ξ)x0+βn(ξ)(y−y0)] for y < y0
(85)

for integer n. Here we consider a specific example and show numerical
results to validate the present formulation. The parameters are chosen
as following values: εs = ε0, εp = εc,m = 4ε0, µs = µp = µc,m = µ0,
d = 0.8λ0, ap = ac,m = 0.4d, and xp = yp = 0.

Figure 2 shows the obtained intensities of the total field at (x, y) =
(0,−d) from the structure, in which only one cylinder is located near
the periodic cylinder array. The additional cylinder and the line source
are located at (xc,1, yc,1) = (0.5d, d) and (x0, y0) = (0, 2d), respectively,
and the truncation order is set to N = K = 4. The dotted and
the dotted-dashed curves are the results of the trapezoidal rule that
determines the sample points with identical interval and the constant
weight. It is observed that they converge very slowly though the
trapezoidal method is known to usually provide a fast convergence
for the integration of smooth periodic functions over one period. The
spectra for the periodic cylinder array without the additional cylinder
were presented in Figure 3 of Ref. [2] and they are not smooth at the
Wood-Rayleigh anomalies. The additional cylinder is thought not to
change the locations of the Wood-Rayleigh anomalies, and here we use
the same discretization scheme with Ref. [2], namely, the integration
range is split at the Wood-Rayleigh anomalies ξ = ±0.2kd and the
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Figure 2. Convergence test of the total field intensities at (x, y) =
(0,−d) for one cylinder backed by periodic cylinder array with a line-
source excitation as function of the number of sample points L.
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Figure 4. Same with Figure 2
but as function of the truncation
order for cylindrical-wave expan-
sions K.

sample points and weights are determined by applying the Gauss-
Legendre scheme for each subinterval. The solid and the dashed
curves in Figure 2 are the results and show much improvement of
the convergence. The convergence in terms of the truncation order
for plane-wave expansions N is shown in Figure 3. We used L = 60
and K = 4, and the sample points and the weights are determined
by the Gauss-Legendre scheme applying to the subintervals. The
convergence is very fast, and this implies that the analysis region can
be limited in the wavenumber space for practical computation. The
numerical results of the convergence test in terms of the truncation
order for cylindrical-wave expansions K are shown in Figure 4. They
are calculated with L = 60 and N = 4, and the discretization scheme
is same with Figure 3. We examine the reciprocal property to validate
the present formulation. Let ψpq(xp, yp; xq, yq) be the field observed
at (xp, yp) for a line source located at (xq, yq). Then we define the
reciprocity error by

σ(xp, yp; xq, yq) =
|ψpq(xp, yp; xq, yq)− ψqp(xq, yq;xp, yp)|

|ψpq(xp, yp; xq, yq)| . (86)

The reciprocity theorem requires that this function is zero when both
(xp, yp) and (xq, yq) are not located in hp,2 < y < hc,1. We fix one
point (xq, yq) = (0, 2d) and the other point (xp, yp) is moved on the
line y = 1.5d. Figure 5 shows calculated values of σ(x, 1.5d; 0, 2d)
at 101 points with identical intervals in −4d ≤ x ≤ 4d, where we
calculated in the standard double-precision arithmetic. The largest
value is about 3.3×10−13, and the reciprocity relation is well satisfied.
Also, the results of the present formulation are compared with those of
the conventional RTMA [3] for the scattering from a finite number of
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Figure 5. Numerical results of reciprocity test for one cylinder backed
by periodic cylinder array with a line-source excitation.
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Figure 6. Convergence test of the total field intensities at (x, y) =
(0,−d) for several cylinders backed by periodic cylinder array with a
line-source excitation as function of the number of sample points L.

cylinders. From the physical point of view, if the number of cylinders
is large enough, the fields near the line source is expected not to be
noticeably different in both methods. Here, we consider 201 cylinders
located at (x, y) = (md, 0) for m = 0,±1, . . . ,±100, and the intensity
of the total field at (x, y) = (0,−d) is calculated by the conventional
RTMA. The obtained values are 0.3031 for TM-polarization and 0.1134
for TE-polarization, which are in good agreement with the results of
the present formulation.

Numerical results of the convergence tests for finite sets of
parallel cylinders placed near the periodic cylinder array are shown
in Figures 6–8. The numbers of additional cylinders are set to M = 5,
11, 21, and the cylinders are located on the line y = d with identical
intervals. We set the position of the mth-cylinder (m = 1, . . . , M) as
(xc,m, yc,m) = ([m − (M + 1)/2]dc, d) with dc = 1.3d. It is observed
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but as function of the truncation
order for cylindrical-wave expan-
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that the convergence speed is similar to the one cylinder case and
the number of additional cylinder seems not to affect a lot to the
convergence speed.

6. CONCLUSIONS

This paper has formulated the two-dimensional electromagnetic
scattering problem of an imperfectly periodic structure, in which
circular cylinders are located near a periodic array consisting of circular
cylinders. The present formulation is based on the multilayer technique
with the help of PPFT, and RTMA with the lattice sums technique is
also used to treat adequately the boundary conditions at the cylinder
surfaces. PPFT introduces the transform parameter ξ, which is related
to the wavenumber, and the transformed fields have a periodic property
in terms of ξ. The practical computation requires an appropriate
discretization on ξ in the Brillouin zone. However, since the Wood-
Rayleigh anomalies are degenerated to two points in the Brillouin
zone and the discretization scheme is comparatively easy to consider.
The numerical results of convergence and reciprocal tests verified the
present formulation, and the number of additional cylinder seems not
to greatly influence the convergence speed.
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