Vol. 119
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-07-21
Taylor-Orthogonal Basis Functions for the Discretization in Method of Moments of Second Kind Integral Equations in the Scattering Analysis of Perfectly Conducting OR Dielectric Objects (Invited Paper)
By
Progress In Electromagnetics Research, Vol. 119, 85-105, 2011
Abstract
We present new implementations in Method of Moments of two types of second kind integral equations: (i) the recently proposed Electric-Magnetic Field Integral Equation (EMFIE), for perfectly conducting objects, and (ii) the Müller formulation, for homogeneous or piecewise homogeneous dielectric objects. We adopt the Taylor-orthogonal basis functions, a recently presented set of facet-oriented basis functions, which, as we show in this paper, arise from the Taylor's expansion of the current at the centroid of the discretization triangles. We show that the Taylor-orthogonal discretization of the EMFIE mitigates the discrepancy in the computed Radar Cross Section observed in conventional divergence-conforming implementations for moderately small, perfectly conducting, sharp-edged objects. Furthermore, we show that the Taylor-discretization of the Müller-formulation represents a valid option for the analysis of sharp-edged homogenous dielectrics, especially with low dielectric contrasts, when compared with other RWG-discretized implementations for dielectrics. Since the divergence-Taylor Orthogonal basis functions are facet-oriented, they appear better suited than other, edge-oriented, discretization schemes for the analysis of piecewise homogenous objects since they simplify notably the discretization at the junctions arising from the intersection of several dielectric regions.
Citation
Eduard Ubeda, José M. Tamayo, and Juan Rius, "Taylor-Orthogonal Basis Functions for the Discretization in Method of Moments of Second Kind Integral Equations in the Scattering Analysis of Perfectly Conducting OR Dielectric Objects (Invited Paper)," Progress In Electromagnetics Research, Vol. 119, 85-105, 2011.
doi:10.2528/PIER11051715
References

1. Hodges, R. E. and Y. Rahmat-Samii, "The evaluation of MFIE integrals with the use of vector triangle basis functions," Microwave and Optical Technology Letters, Vol. 14, No. 1, 9-14, Jan. 1997.
doi:10.1002/(SICI)1098-2760(199701)14:1<9::AID-MOP4>3.0.CO;2-P

2. Graglia, R. D., D. R. Wilton, and A. F. Peterson, "Higher order interpolatory vector bases for computational electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, 329-342, Mar. 1997.
doi:10.1109/8.558649

3. Rius, J. M., E. Ubeda, and J. Parrón, "On the testing of the magnetic field integral equation with RWG basis functions in method of moments," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 11, 1550-1553, Nov. 2001.
doi:10.1109/8.964090

4. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 3, 409-418, May 1982.
doi:10.1109/TAP.1982.1142818

5. Wilton, D. R., J. E. Wheeler, and III, "Comparison of convergence rates of the conjugate gradient method applied to various integral equation formulations," Progress In Electromagnetics Research, Vol. 5, 131-158, 1991.

6. Ubeda, E. and J. M. Rius, "MFIE MoM-formulation with curl-conforming basis functions and accurate Kernel-integration in the analysis of perfectly conducting sharp-edged objects," Microwave and Optical Technology Letters, Vol. 44, No. 4, Feb. 2005.
doi:10.1002/mop.20633

7. Ergül, Ö. and L. Gürel, "The use of curl-conforming basis functions for the magnetic-field integral equation," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 7, 1917-1926, Jul. 2006.
doi:10.1109/TAP.2006.877159

8. Ubeda, E. and J. M. Rius, "Comments on ``The use of curl-conforming basis functions for the magnetic-field integral equation"," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 7, 2142, Jul. 2008.
doi:10.1109/TAP.2008.924777

9. Ergül, Ö. and L. Gürel, "Improving the accuracy of the magnetic field integral equation with the linear-linear basis functions," Radio Science, Vol. 41, 2006, RS4004, doi:10.1029/2005RS003307.

10. Ubeda, E. and J. M. Rius, "Novel monopolar MoM-MFIE discretization for the scattering analysis of small objects," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 1, 50-57, Jan. 2006.
doi:10.1109/TAP.2005.861529

11. Müller, C., Foundations of the Mathematical Theory of Electromagnetic Waves, Springer, Berlin, Germany, 1969.

12. Chao, J. C., Y. J. Liu, F. J. Rizzo, P. A. Martin, and L. Udpa, "Regularized integral equations and curvilinear boundary elements for electromagnetic wave scattering in three dimensions," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 12, 1416-1422, Dec. 1995.
doi:10.1109/8.475931

13. Ylä-Oijala, P. and M. Taskinen, "Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 12, Dec. 1995.
doi:10.1109/8.475931

14. Ylä-Oijala, P, M. Taskinen, and S. JÄarvenpää, "Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods ," Radio Science, Vol. 40, No. 6, RS6002, Nov. 2005.

15. Poggio, A. J. and E. K. Miller, "Integral equation solutions of threedimensional scattering problems," Computer Techniques for Electromagnetics, Vol. 4, R. Mittra, Ed., Pergamon Press, Oxford, UK, 1973.

16. Wu, T. K. and L. L. Tsai, "Scattering from arbitrarily-shaped lossy dielectric bodies of revolution," Radio Science, Vol. 12, 709-718, Sep.-Oct. 1977.

17. Chang, Y. and R. F. Harrington, "A surface formulation for characteristic modes of material bodies," IEEE Transactions on Antennas and Propagation, Vol. 25, 789-795, Nov. 1977.
doi:10.1109/TAP.1977.1141685

18. Ubeda, E., J. M. Tamayo, and J. M. Rius, "Orthogonal basis functions for the discretization of the magnetic-field integral equation in the low frequency regime," European Conference on Antennas and Propagation (EUCAP), Barcelona, Apr. 12-16, 2010.

19. Ubeda, E. and J. M. Rius, "New electric-magnetic field integral equation for the scattering analysis of perfectly conducting sharp-edged objects at very low or extremely low frequencies ," IEEE International Symposium on Antennas and Propagation, Toronto, Jul. 11-17, 2010.

20. Wu, W., A. W. Glisson, and D. Kajfez, "A study of two numerical procedures for the electric field integral equation at low frequency," Appl. Computat. Electromagn. Soc. J., Vol. 10, No. 3, Nov. 1995.

21. Lee, J., R. Lee, and R. J. Burkholder, "Loop star basis functions and a robust preconditioner for EFIE scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 8, Aug. 2003.
doi:10.1109/TAP.2003.814736

22. Trintinalia, L. C. and H. Ling, "First order triangular patch basis functions for electromagnetic scattering analysis," Journal of Electromagnetic Waves and Applications, Vol. 15, No. 11, 1521-1537, 2001.
doi:10.1163/156939301X00085

23. Van Bladel, J., Singular Electromagnetic Fields and Sources, Clarendon Press, Oxford, 1991.

24. Ubeda, E. and J. M. Rius, "Monopolar divergence-conforming and curl-conforming low-order basis functions for the electromagnetic scattering analysis," Microwave and Optical Technology Letters, Vol. 46, No. 3, 237-241, Aug. 2005.
doi:10.1002/mop.20955

25. Taskinen, M., "Electromagnetic surface integral equations and fully orthogonal higher order basis functions ," IEEE International Symposium on Antennas and Propagation, San Diego, Jul. 5-12, 2008.

26. Graglia, R. D., "On the numerical integration of the linear shape functions times the 3D's Green's function or its gradient on a plane triangle," IEEE Transactions on Antennas and Propagation, Vol. 41, No. 10, 1448-1455, Oct. 1993.
doi:10.1109/8.247786

27. Wilton, D. R., S. M. Rao, A. W. Glisson, D. H. Schaubert, O. M. Al-Bundak, and C. M. Butler, "Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains," IEEE Transactions on Antennas and Propagation, Vol. 32, No. 3, 276-281, Mar. 1984.
doi:10.1109/TAP.1984.1143304

28. Ylä-Oijala, P., M. Taskinen, and J. Sarvas, "Surface integral equation method for general composite metallic and dielectric structures with junctions," Progress In Electromagnetics Research, Vol. 52, 81-108, 2005.
doi:10.2528/PIER04071301