1. Hodges, R. E. and Y. Rahmat-Samii, "The evaluation of MFIE integrals with the use of vector triangle basis functions," Microwave and Optical Technology Letters, Vol. 14, No. 1, 9-14, Jan. 1997.
doi:10.1002/(SICI)1098-2760(199701)14:1<9::AID-MOP4>3.0.CO;2-P
2. Graglia, R. D., D. R. Wilton, and A. F. Peterson, "Higher order interpolatory vector bases for computational electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, 329-342, Mar. 1997.
doi:10.1109/8.558649
3. Rius, J. M., E. Ubeda, and J. Parrón, "On the testing of the magnetic field integral equation with RWG basis functions in method of moments," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 11, 1550-1553, Nov. 2001.
doi:10.1109/8.964090
4. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 3, 409-418, May 1982.
doi:10.1109/TAP.1982.1142818
5. Wilton, D. R., J. E. Wheeler, and III, "Comparison of convergence rates of the conjugate gradient method applied to various integral equation formulations," Progress In Electromagnetics Research, Vol. 5, 131-158, 1991.
6. Ubeda, E. and J. M. Rius, "MFIE MoM-formulation with curl-conforming basis functions and accurate Kernel-integration in the analysis of perfectly conducting sharp-edged objects," Microwave and Optical Technology Letters, Vol. 44, No. 4, Feb. 2005.
doi:10.1002/mop.20633
7. Ergül, Ö. and L. Gürel, "The use of curl-conforming basis functions for the magnetic-field integral equation," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 7, 1917-1926, Jul. 2006.
doi:10.1109/TAP.2006.877159
8. Ubeda, E. and J. M. Rius, "Comments on ``The use of curl-conforming basis functions for the magnetic-field integral equation"," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 7, 2142, Jul. 2008.
doi:10.1109/TAP.2008.924777
9. Ergül, Ö. and L. Gürel, "Improving the accuracy of the magnetic field integral equation with the linear-linear basis functions," Radio Science, Vol. 41, 2006, RS4004, doi:10.1029/2005RS003307.
10. Ubeda, E. and J. M. Rius, "Novel monopolar MoM-MFIE discretization for the scattering analysis of small objects," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 1, 50-57, Jan. 2006.
doi:10.1109/TAP.2005.861529
11. Müller, C., Foundations of the Mathematical Theory of Electromagnetic Waves, Springer, Berlin, Germany, 1969.
12. Chao, J. C., Y. J. Liu, F. J. Rizzo, P. A. Martin, and L. Udpa, "Regularized integral equations and curvilinear boundary elements for electromagnetic wave scattering in three dimensions," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 12, 1416-1422, Dec. 1995.
doi:10.1109/8.475931
13. Ylä-Oijala, P. and M. Taskinen, "Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 12, Dec. 1995.
doi:10.1109/8.475931
14. Ylä-Oijala, P, M. Taskinen, and S. JÄarvenpää, "Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods ," Radio Science, Vol. 40, No. 6, RS6002, Nov. 2005.
15. Poggio, A. J. and E. K. Miller, "Integral equation solutions of threedimensional scattering problems," Computer Techniques for Electromagnetics, Vol. 4, R. Mittra, Ed., Pergamon Press, Oxford, UK, 1973.
16. Wu, T. K. and L. L. Tsai, "Scattering from arbitrarily-shaped lossy dielectric bodies of revolution," Radio Science, Vol. 12, 709-718, Sep.-Oct. 1977.
17. Chang, Y. and R. F. Harrington, "A surface formulation for characteristic modes of material bodies," IEEE Transactions on Antennas and Propagation, Vol. 25, 789-795, Nov. 1977.
doi:10.1109/TAP.1977.1141685
18. Ubeda, E., J. M. Tamayo, and J. M. Rius, "Orthogonal basis functions for the discretization of the magnetic-field integral equation in the low frequency regime," European Conference on Antennas and Propagation (EUCAP), Barcelona, Apr. 12-16, 2010.
19. Ubeda, E. and J. M. Rius, "New electric-magnetic field integral equation for the scattering analysis of perfectly conducting sharp-edged objects at very low or extremely low frequencies ," IEEE International Symposium on Antennas and Propagation, Toronto, Jul. 11-17, 2010.
20. Wu, W., A. W. Glisson, and D. Kajfez, "A study of two numerical procedures for the electric field integral equation at low frequency," Appl. Computat. Electromagn. Soc. J., Vol. 10, No. 3, Nov. 1995.
21. Lee, J., R. Lee, and R. J. Burkholder, "Loop star basis functions and a robust preconditioner for EFIE scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 8, Aug. 2003.
doi:10.1109/TAP.2003.814736
22. Trintinalia, L. C. and H. Ling, "First order triangular patch basis functions for electromagnetic scattering analysis," Journal of Electromagnetic Waves and Applications, Vol. 15, No. 11, 1521-1537, 2001.
doi:10.1163/156939301X00085
23. Van Bladel, J., Singular Electromagnetic Fields and Sources, Clarendon Press, Oxford, 1991.
24. Ubeda, E. and J. M. Rius, "Monopolar divergence-conforming and curl-conforming low-order basis functions for the electromagnetic scattering analysis," Microwave and Optical Technology Letters, Vol. 46, No. 3, 237-241, Aug. 2005.
doi:10.1002/mop.20955
25. Taskinen, M., "Electromagnetic surface integral equations and fully orthogonal higher order basis functions ," IEEE International Symposium on Antennas and Propagation, San Diego, Jul. 5-12, 2008.
26. Graglia, R. D., "On the numerical integration of the linear shape functions times the 3D's Green's function or its gradient on a plane triangle," IEEE Transactions on Antennas and Propagation, Vol. 41, No. 10, 1448-1455, Oct. 1993.
doi:10.1109/8.247786
27. Wilton, D. R., S. M. Rao, A. W. Glisson, D. H. Schaubert, O. M. Al-Bundak, and C. M. Butler, "Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains," IEEE Transactions on Antennas and Propagation, Vol. 32, No. 3, 276-281, Mar. 1984.
doi:10.1109/TAP.1984.1143304
28. Ylä-Oijala, P., M. Taskinen, and J. Sarvas, "Surface integral equation method for general composite metallic and dielectric structures with junctions," Progress In Electromagnetics Research, Vol. 52, 81-108, 2005.
doi:10.2528/PIER04071301