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DISCRETIZATION IN METHOD OF MOMENTS OF SEC-
OND KIND INTEGRAL EQUATIONS IN THE SCATTER-
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Abstract—We present new implementations in Method of Moments
of two types of second kind integral equations: (i) the recently proposed
Electric-Magnetic Field Integral Equation (EMFIE), for perfectly
conducting objects, and (ii) the Müller formulation, for homogeneous
or piecewise homogeneous dielectric objects. We adopt the Taylor-
orthogonal basis functions, a recently presented set of facet-oriented
basis functions, which, as we show in this paper, arise from the Taylor’s
expansion of the current at the centroid of the discretization triangles.
We show that the Taylor-orthogonal discretization of the EMFIE
mitigates the discrepancy in the computed Radar Cross Section
observed in conventional divergence-conforming implementations
for moderately small, perfectly conducting, sharp-edged objects.
Furthermore, we show that the Taylor-discretization of the Müller-
formulation represents a valid option for the analysis of sharp-
edged homogenous dielectrics, especially with low dielectric contrasts,
when compared with other RWG-discretized implementations for
dielectrics. Since the divergence-Taylor Orthogonal basis functions
are facet-oriented, they appear better suited than other, edge-oriented,
discretization schemes for the analysis of piecewise homogenous objects
since they simplify notably the discretization at the junctions arising
from the intersection of several dielectric regions.
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1. INTRODUCTION

The discretization in Method of Moments (MoM) with RWG basis
functions, a zeroth-order example of divergence-conforming set, of the
Magnetic-Field Integral Equation (MFIE) [1, 2], a second kind surface
integral equation, for perfectly conducting (PeC) objects shows some
discrepancy [3] in the computed Radar Cross Section (RCS) with
respect to the EFIE [4], a first kind surface integral equation [5].
This discrepancy is especially evident in the analysis of electrically
moderately small perfectly conducting sharp-edged objects. Over the
last years, other sets of basis functions have been proposed for the
MoM-discretization of the MFIE in the scattering analysis of PeC-
objects that reduce the observed discrepancy [6–10].

The Müller formulation [11–13] stands for a second kind Integral
Equation in the scattering analysis of homogeneous or piecewise
homogeneous dielectric objects. The MoM-implementation of the
Müller-formulation is normally carried out with the RWG basis
functions [13, 14]. Since the Müller formulation combines magnetic-
field and electric-field contributions from the PeC-case in such a way
that the gram-matrix contributions are enhanced, one may expect
that this implementation of the Müller-formulation may reproduce,
to some extent, the observed performance for the RWG-discretization
of the MFIE in conductors. In our experience, as we show in
this paper, the Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT)
formulation [15–17], a first kind Integral Equation for dielectric objects,
provides a stable trend for convergence for electrically coarser degrees
of meshing than the Müller-formulation. Moreover, we observe that
moderately small sharp-edged objects with low dielectric contrast show
in general much smaller RCS deviation with the RWG-implementation
of the Müller-formulation than in the PeC-case. However, for
high dielectric contrasts, the observed degree of deviation increases,
although it depends greatly on the shape of the object under analysis.
In view of our tests, the RCS deviation becomes especially significant
for cubes, as it has been also reported by others [13, 14].

In this paper, we use the recently presented facet-oriented
orthogonal basis functions [18], well-suited for the discretization of
Second-kind Integral Equations. We now decide to rename the first
order orthogonal basis functions presented in [18] as divergence-
Taylor-Orthogonal basis functions (div-TO) because, as we show
in this paper, they are derived from the uniform terms and from
the linear, divergence-conforming, contributions in the 2D Taylor’s
expansion of the current at a reference surface point inside a
facet arising from the discretization. We present two new MoM-
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implementations with the div-TO basis functions of two second
kind Integral Equations: (i) The Electric-Magnetic Field Integral
Equation (EMFIE), recently presented in [19] under a Loop-Star
discretization [20, 21], for conductors and (ii) the Müller formulation,
for homogeneous or piecewise homogeneous dielectric objects. The
development of the div-TO discretization of the EMFIE and the
Müller formulation, unlike the same implementation for the MFIE
in [18], requires the discretization of the scalar potentials. The source
contributions of the scalar potentials are usually discretized in the
context of the EFIE or PMCHWT formulations with divergence-
conforming basis functions [4, 22], which preserve normal continuity
of the current across the edges. In this paper, though, we provide
a more general definition for the discrete electric and magnetic scalar
potentials because the normal component of the current expanded with
the div-TO basis functions is not confined in the facets arising from
the discretization.

2. TAYLOR-ORTHOGONAL BASIS FUNCTIONS

Interestingly, the imposition of the tangential continuity of the current
across edges appears better-suited than the imposition of the normal
continuity for the MoM-discretization of the MFIE for sharp-edged
objects [6]. The normal-continuity constraint in RWG is applied in the
discretizations of the EFIE but it is not clear, in our opinion, that it
must be imposed for second kind Integral Equations like the MFIE or
the EMFIE.

The current may become singular exactly on the tips of sharp
edges [23] but is bounded and continuous at any surface point ~r0 out
of sharp edges or corners. In general, we can approximate the current
in the vicinity of the reference point ~r0, J(~r0|u, v), in terms of the
first-order 2D Taylor’s expansion, as

J(~r0|u, v) ≈ J(0,0) +
[
∂J
∂u

]

(0,0)

u +
[
∂J
∂v

]

(0,0)

v

= [Ju](0,0)û + [Jv](0,0)v̂ +
[
∂Ju

∂u

]

(0,0)

uû

+
[
∂Jv

∂u

]

(0,0)

uv̂ +
[
∂Ju

∂v

]

(0,0)

vû +
[
∂Jv

∂v

]

(0,0)

vv̂ (1)

where (u, v) stand for the local cartesian planar coordinates around
~r0, and J(0,0), [∂J

∂u ](0,0), [∂J
∂v ](0,0) denote the current and the partial

derivatives of the current at ~r0. The definition of the following
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quantities A, B, C, D

A =
[
∂Ju

∂u

]

(0,0)

+
[
∂Jv

∂v

]

(0,0)

B =
[
∂Ju

∂u

]

(0,0)

−
[
∂Jv

∂v

]

(0,0)

(2)

C =
[
∂Jv

∂u

]

(0,0)

+
[
∂Ju

∂v

]

(0,0)

D =
[
∂Jv

∂u

]

(0,0)

−
[
∂Ju

∂v

]

(0,0)

(3)

allows the expression of (1) equivalently as

J (~r0|u, v) ≈ [Ju](0,0)û + [Jv](0,0)v̂ +
1
2
(A + B)uû

+
1
2
(C + D)uv̂ +

1
2
(C −D)vû +

1
2
(A−B)vv̂ (4)

and

J (~r0|u, v) ≈ [Ju](0,0)û + [Jv](0,0)v̂ +
A

2
(uû + vv̂)

+
B

2
(uû− vv̂) +

C

2
(uv̂ + vû) +

D

2
(uv̂ − vû) (5)

where the local polar coordinates (ρ, φ) and the local cartesian
coordinates (u, v) are related as (see Figure 1)

ρρ̂ = uû + vv̂ ρφ̂ = uv̂ − vû (6)

x

y

z cr

n̂c

n̂

v̂

û φ
ρρ̂

Figure 1. Local polar and cartesian coordinates for the definition of
the Taylor-Orthogonal basis functions.
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In view of (2) and (3), the definitions for A and D become

A = [∇ · J](0,0) D = [n̂ · ∇ × J](0,0) (7)

The coefficients A, D are important in the linear approximation of
J at ~r0 because [∇ · J](0,0) and [n̂ · ∇ × J](0,0) are relevant in the
expansion of the normal components of the Electric and Magnetic
scattered fields, respectively. However, the remaining terms in (5),
associated to the coefficients C, B, provide null divergence and normal
curl, whereby they may be ignored. The expression (5) can be then
rewritten accordingly as

J (~r0|u, v) ≈ [Ju](0,0)û+[Jv](0,0)v̂+
1
2
[∇·J](0,0)ρρ̂+

1
2
[n̂·∇×J](0,0)ρφ̂ (8)

which represents a local linear approximation of the current in the
vicinity of the reference point ~r0 with four degrees of freedom: [Ju](0,0),
[Jv](0,0), [∇ · J](0,0) and [n̂ · ∇ × J](0,0). Four basis functions are hence
required to capture each of the unknowns. We establish as domains for
these basis functions each of the facets arising from the discretization.

The zeroth order Taylor-orthogonal basis functions [25] are

b0,u =
1√
Ar

û b0,v =
1√
Ar

v̂ (9)

where Ar represents the area of the facet. This definition allows∫

F

b0,u · b0,vds = 0 (10)

∫

F

b0,u · b0,uds =
∫

F

b0,v · b0,vds = 1 (11)

where F denotes the facet. We define the remaining first-order basis
functions as

b1,ρ =
1

2Ar
(~r − ~rc) b1,n×ρ =

1
2Ar

n̂× (~r − ~rc) (12)

where ~rc stands for the geometrical center of the facet, the centroid in
a triangle (see Figure 1). From this definition it is accomplished

∇ · b1,ρ = n̂ · (∇× b1,n×ρ) = 1/Ar (13)∫

F

b0,u · b1,ρds =
∫

F

b0,v · b1,ρds =
∫

F

b1,ρ · b1,n×ρds = 0 (14)

The properties (10) and (14) show that these basis functions
are orthogonal, whereby we name them Taylor-orthogonal basis
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functions. We define two sets of Taylor-orthogonal basis functions:
the divergence-Taylor-orthogonal basis functions (div-TO) and the
curl-Taylor-orthogonal basis functions (curl-TO). Both sets of basis
functions group three Taylor-orthogonal basis functions per facet.
Whereas the div-TO set retains b0,u, b0,v and b1,ρ, the curl-TO set
considers b0,u, b0,v and b1,n×ρ.

The monopolar RWG and nxRWG sets [10, 24] stand for facet-
oriented sets of basis functions too. They arise from breaking,
respectively, the normal or tangential continuity constraints enforced
by the RWG or nxRWG sets across the edges. The div-TO and the
curl-TO sets expand the same spaces of current as, respectively, the
monopolar RWG and the monopolar nxRWG sets [18]. Therefore, the
monopolar sets and the div-TO or curl-TO basis functions require the
same number of unknowns. Indeed, twice the number of edges is equal,
for closed objects, to three times the number of facets. This represents
twice the number of unknowns of the RWG basis functions.

3. TAYLOR-ORTHOGONAL DISCRETIZATION OF THE
ELECTRIC-MAGNETIC FIELD INTEGRAL EQUATION

The Electric-Magnetic Field Integral Equation (EMFIE) is based on
imposing at the same time the tangential magnetic and the normal
electric field boundary conditions over the surface S embracing the
scatterer; that is,

n̂×Hi =
J
2
−

(
1
µ0

)
n̂× [∇×A]CPV (15)

n̂ ·Ei

η0
=

∇ · J
2(−jk)

+
(

1
η0

)
n̂ · [∇Φ]CPV +

(
jk

µ0

)
n̂ ·A (16)

which are second-kind integral equations because the source
magnitudes, current and divergence of the current, respectively, J and
∇ · J, come out from the source-integrals in the potentials. Hi, Ei

stand for the incident magnetic and electric fields and the quantities k,
n̂, ε0, µ0, η0 represent, respectively, the wavenumber, the unit vector
normal to the surface, the free-space dielectric permittivity, the free-
space magnetic permeability and the free-space impedance. The MFIE
is obtained by imposing only the tangential continuity of the magnetic
field in (15).

The limiting values of the singular Kernel contributions in the
source integrals depend on the current for the magnetic field in (15)
and on the divergence of the current for the normal component of the
scattered electric field in (16). The definition for the magnetic vector
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potential A is

A = µ0

∫∫

S

GJds′ (17)

The definition of the potential related quantities in (15) and (16)
capturing the Cauchy Principal value of the surface integrals are

[∇×A]CPV = µ0

∫∫

S,CPV

∇G× Jds′ (18)

[∇Φ]CPV =
η0

(−jk)

∫∫

S,CPV

∇G∇′ · Jds′ (19)

where G = e−jk|~r−~r′|
4π|~r−~r′| stands for the free-space Green’s function.

In view of (15) and (16), the source magnitudes appear
predominantly in the range spaces of the integral equations derived.
It makes then sense to undertake the MoM-testing of (15) with the
basis functions adopted for the expansion of the current. Similarly,
in the MoM-testing of (16) we need to employ the divergence of
the basis functions expanding the current. It is then clear that
a successful MoM-implementation of the EMFIE must provide for
the proper expansion for both the current and the charge density.
The solenoidal contribution of the current has zero divergence and
cannot therefore expand properly the range space of the normal-electric
integral equation in (16). The nonsolenoidal component of the current,
with non-null divergence, is well suited for the expansion of the charge
density, which is mandatory for the proper accomplishment of (16).
Therefore, the MoM-implementation of the EMFIE with the Loop,
solenoidal, and the Star, nonsolenoidal, basis functions follows these
guidelines accordingly [19].

The RWG discretization of the MFIE provides some deviation in
the computed RCS of sharp-edged perfectly conducting objects with
respect to the EFIE. The EMFIE, based to some extent on the MFIE,
also shows this RCS discrepancy with the Loop-Star discretization,
which represents a solenoidal-nonsolenoidal rearrangement of the RWG
current space. In the div-TO discretization, the solenoidal subspace of
current must be captured by the divergence-free zeroth-order terms,
b0,u, b0,v. The b1,ρ term, in contrast, with non-zero divergence, must
provide for the expansion of the nonsolenoidal subspace of current.
Furthermore, the monopolar RWG discretization of the MFIE reduces
significantly the RCS deviation observed with the RWG discretization
for moderately small sharp-edged objects [10]. Since the div-TO basis
functions expand the same space as the monopolar RWG set, it is
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reasonable to expect some improvement in the div-TO discretization
of the EMFIE too with respect to the Loop-Star discretization.

We arrange the divergence-Taylor-Orthogonal basis functions in
three subsets B0,u = {b1

0,u . . . bNf

0,u}, B0,v = {b1
0,v . . . bNf

0,v} and

B1,ρ = {b1
1,ρ . . . bNf

1,ρ} gathering, respectively, the u-, v- and ρ-
contributions in the Nf facets arising from the discretization. These
subsets are introduced consecutively in the definition of {on}, the
whole set of divergence-Taylor-Orthogonal basis functions, so that
{on} = {B0,u,B0,v,B1,ρ}. The expansion of the electric current with
the div-TO basis functions then yields

J ≈
3Nf∑

n=1

Jnon (20)

where Jn denote the current coefficients. The div-TO discretization of
the EMFIE results in the following matrix system

H i
m =

3Nf∑

n=1

ZH
mnJn m = 1 . . . 2Nf (21)

Ei
m =

3Nf∑

n=1

ZE
mnJn m = (2Nf + 1) . . . 3Nf (22)

The magnetic-field quantities ZH
mn and H i

m denote, respectively, the
impedance matrix elements and the tested incident magnetic field or
excitation vector, defined as

H i
m =

[〈
om, n̂m ×Hi

〉]
=

∫∫

Fm

(om × n̂m) ·Hids (23)

ZH
mn =

1
2

∫∫

Fm

om · onds− 1
µ0

∫∫

Fm

om · (n̂m × [∇×A]nCPV) ds (24)

where Fm stands for the m-th facet arising from the discretization and
n̂m denotes the unit vector normal normal to Fm.

The first term in the right-hand side in (24) is related with
the Gram-matrix, which is diagonal because of the property of
orthogonality of the div-TO basis functions. The testing in (23)
and (24) is carried out with the zeroth-order Taylor-orthogonal basis
functions [25]. In view of (18), the contribution of the n-th div-TO
basis function in the expansion of [∇×A]CPV becomes

[∇×A]nCPV = µ0

∫∫

Fn,CPV

∇G× onds′ (25)
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The electric-field quantities ZE
mn and Ei

m in (22) denote, respectively,
the normal-electric impedance elements and the normally tested
incident electric field, which are defined as

Ei
m =

[〈
Πmn̂m,

Ei

η0

〉]
=

(
1
η0

)∫∫

Fm

Πmn̂m ·Eids (26)

ZE
mn =

1
2(−jk)

∫∫

Fm

Πm∇ · onds +
1
η0

∫∫

Fm

Πmn̂m · [∇Φ]nCPVds

+
(

jk

µ0

)∫∫

Fm

Πmn̂m ·Ands (27)

where Πm stands for a constant pulse defined over the testing facet.
The definition of this testing-pulse is consistent with the uniformity
of the divergence of the term b1,ρ in the div-TO set. In view of (17),
the n-th div-TO contribution in the discrete expansion of the magnetic
vector potential in (27) results in

An = µ0

∫∫

Fn

onGds′ (28)

Furthermore, [∇Φ]nCPV, the other potential magnitude in (27), denotes
the contribution of the n-th div-TO basis function to the Cauchy
Principal value of the gradient of the electric scalar potential.

The use of the potentials in the analysis of PeC-scattering prob-
lems with Integral Equations is associated with the accomplishment
of the Gauge-Lorentz condition, which, prior to discretization, estab-
lishes the definition of the electric scalar potential Φ in terms of the
magnetic vector potential A as

Φ = − 1
jk
√

µ0ε0
∇ ·A =− η0

jk
∇ ·




∫∫

S

GJds′


 (29)

After discretization, the space of current is determined by the
expansion in terms of the adopted divergence-Taylor-Orthogonal basis
n-th div-TO basis function in the expansion of the electric scalar
potential is

Φn = − η0

jk
∇ ·




∫∫

Fn

Gonds′


 (30)

which becomes equivalently
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Φn = − η0

jk

∫∫

Fn

∇G · onds =
η0

jk

∫∫

Fn

∇′G · onds′

=
η0

jk




∫∫

Fn

∇′ · (Gon)ds′ −
∫∫

Fn

G∇′ · (on)ds′




=
η0

jk




∮

∂Fn

G (on · n̂c) dl′ −
∫∫

Fn

G∇′ · (on)ds′


 (31)

where ∂Fn and n̂c denote, respectively, the closed contour around
the source facet Fn and the unit-normal vector to this contour (see
Figure 1). Note that the line-integral in (31) becomes zero for
divergence-conforming discretizations, like RWG or rooftop, because
they ensure, by definition, normal continuity of the current across the
edges. As a matter of fact, this leads to the widely used expression for
[∇Φ]nCPV arising for example in divergence-conforming discretizations
of the EFIE [4, 22]. However, the current expanded by the divergence-
Taylor-Orthogonal basis functions leaks out from the facet domain and
therefore the full expression in (31) needs to be considered. Finally,
the expression for [∇Φ]nCPV required in (27) must be

[∇Φ]nCPV =
1

jωε0




∮

∂Fn

∇G (on · n̂c) dl′−
∫∫

Fn,CPV

∇G∇′ · (on)ds′


 (32)

4. TAYLOR-ORTHOGONAL DISCRETIZATION OF THE
MÜLLER FORMULATION

The Müller formulation arises in the scattering analysis of homoge-
neous or piecewise homogeneous dielectric objects. In general, the EM
scattering from a penetrable object is solved through the definition of
an equivalent problem resulting from the combination of two homo-
geneous problems associated to the outer and inner dielectric regions,
respectively R1 and R2, in general with different pairs of dielectric per-
mittivities and magnetic permeabilities, (ε1, µ1) and (ε2, µ2). Both
regions have accordingly different wavenumbers and impedances, (k1,
η1) and (k2, η2). In particular, the Müller formulation results from im-
posing the following magnetic-field and electric-field conditions across
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the surface S embracing the penetrable object so that

µ1n̂1 ×Hi =
(µ1 + µ2)

2
J1 − µ1n̂1 × [Hs

1]CPV+µ2n̂2×[Hs
2]CPV (33)

ε1n̂1×Ei = −(ε1+ε2)
2

M1−ε1n̂1 × [Es
1]CPV+ε2n̂2×[Es

2]CPV (34)

which are second-kind integral equations because the source
magnitudes, the electric and magnetic currents, come out from the
source radiating integrals of the scattered fields. The terms Ei, Hi

denote the incident electric and magnetic fields. The vectors n̂1, n̂2

denote the unit vectors normal to the surface pointing into the outer
and inner regions, respectively, and accomplish n̂2 = −n̂1. The electric
and magnetic currents at both sides of the surface, J1, J2 and M1,
M2, are also related so that J2 = −J1 and M2 = −M1. The scattered
magnetic and electric fields at the outer and inner sides of the surface
stand for Hs

1, Hs
2 and Es

1, Es
2. The extraction of the limiting value of

the singular Kernel contribution in the source integrals of the scattered
fields results in

n̂i ×Hs
i =

Ji

2
+ n̂i × [Hs

i ]CPV (35)

n̂i ×Es
i = −Mi

2
+ n̂i × [Es

i ]CPV (36)

where i = 1, 2 denotes the dielectric region involved.
The contributions to the scattered fields in (33) and (34) in terms

of the vector and scalar potentials in each region become

µin̂i×Hs
i =

µiJi

2
+n̂i×[∇×Ai]CPV−jkiηin̂i × Fi−µin̂i ×∇Ψi(37)

εin̂i×Es
i =−εiMi

2
−n̂i × [∇×Fi]CPV−

jki

ηi
n̂i×Ai−εin̂i×∇Φi(38)

The integral expressions for the magnetic vector and the electric scalar
potentials, Ai and Φi, related with the electric source currents, yield

Ai = µi

∫∫

S

GiJids′ Φi =
ηi

(−jki)

∫∫

S

Gi∇′ · Jids′ (39)

Similarly, the integral expressions for the electric vector and magnetic
scalar potentials, related with the magnetic source currents, become

Fi = εi

∫∫

S

GiMids′ Ψi =
1

(−jkiηi)

∫∫

S

Gi∇′ ·Mids′ (40)

where Gi = e−jki|~r−~r′|
4π|~r−~r′| stands for the Green’s function in the region Ri.
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The Galerkin-discretization of the Müller-formulation with the
div-TO basis functions is formally similar to the procedure described
in [13] for the RWG basis functions. Now the expansion of the electric
and magnetic currents with the div-TO basis functions is

J1 ≈
3Nf∑

n=1

J1
non M1 ≈

3Nf∑

n=1

M1
non (41)

where J1
n and M1

n denote the electric and magnetic current coefficients,
respectively, in region R1. The current coefficients at the other side of
the surface, in region R2 are related so that J2

n = −J1
n and M2

n = −M1
n.

The div-TO discretization of the Müller-formulation results in the
following matrix system

H i
m =

3Nf∑

n=1

ZHJ
mn J1

n +
3Nf∑

n=1

ZHM
mn M1

n m = 1 . . . 3Nf (42)

Ei
m =

3Nf∑

n=1

ZEJ
mnJ1

n +
3Nf∑

n=1

ZEM
mn M1

n m = 1 . . . 3Nf (43)

The quantities H i
m and Ei

m represent the excitation vectors for,
respectively, the incident magnetic and incident electric fields,

H i
m =

[〈
om, n̂m

1 ×Hi
〉]

=
∫∫

Fm

(om × n̂m
1 ) ·Hids (44)

Ei
m =

[〈
om, n̂m

1 ×Ei
〉]

=
∫∫

Fm

(om × n̂m
1 ) ·Eids (45)

where Fm stands for the m-th facet arising from the discretization
of the surface and n̂m

1 denotes the unit vector normal to Fm pointing
towards the region R1. The impedance elements in the submatrices
along the main diagonal of the system in (42) and (43), ZHJ

mn and
ZEM

mn , are defined as

ZHJ
mn =

(µ1 + µ2)
2

∫∫

Fm

om · onds

−
∫∫

Fm

om · [n̂m
1 × ([∇×A1]

n
CPV − [∇×A2]

n
CPV)] ds (46)
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ZEM
mn = −(ε1 + ε2)

2

∫∫

Fm

om · onds

+
∫∫

Fm

om · [n̂m
1 × ([∇× F1]

n
CPV − [∇× F2]

n
CPV)] ds (47)

where the first term in the right-hand side is related with the Gram-
matrix, which is diagonal because of the orthogonality of the div-TO
basis functions. The contribution of the n-th div-TO basis function
in the expansion of the Cauchy principal value of the source integrals
in (46) and (47) yields

[∇×A1]nCPV − [∇×A2]nCPV =
∫∫

S,CPV

(µ1∇G1 − µ2∇G2)× onds′ (48)

[∇× F1]nCPV − [∇× F2]nCPV =
∫∫

S,CPV

(ε1∇G1 − ε2∇G2)× onds′ (49)

The definition for the off-diagonal submatrices in (42) and (43), ZHM
mn

and ZEJ
mn, is

ZHM
mn = −

∫∫

Fm

om · [n̂m
1 × (jk1η1Fn

1 − jk2η2Fn
2 )] ds

−
∫∫

Fm

om · [n̂m
1 × (µ1∇Ψn

1 − µ2∇Ψn
2 )] ds (50)

ZEJ
mn = −

∫∫

Fm

om ·
[
n̂m

1 ×
(

jk1

η1
An

1 −
jk2

η2
An

2

)]
ds

−
∫∫

Fm

om · [n̂m
1 × (ε1∇Φn

1 − ε2∇Φn
2 )] ds (51)

where the contribution of the n-th div-TO basis function in the
expansion of the vector electric and magnetic potentials result in

(jk1η1Fn
1 − jk2η2Fn

2 ) = jω

∫∫

S

(µ1ε1G1 − µ2ε2G2)onds′ (52)

(
jk1

η1
An

1 −
jk2

η2
An

2

)
= jω

∫∫

S

(µ1ε1G1 − µ2ε2G2)onds′ (53)

and, in view of the discrete expansion of the gradient of the scalar
electric potential in the perfectly conducting case in (32), in the
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dielectric case the discrete contribution in (51) becomes

(ε1∇Φn
1 − ε2∇Φn

2 ) =
1
jω

[∮

∂Fn

(∇G1 −∇G2) (on · n̂c) dl′

−
∫∫

Fn

(∇G1 −∇G2)∇′ · (on)ds′


 (54)

and, in an analogous manner, for the expansion of the magnetic scalar
potential in (50), we can write

(µ1∇Ψn
1 − µ2∇Ψn

2 ) =
1
jω

[∮

∂Fn

(∇G1 −∇G2) (on · n̂c) dl′

−
∫∫

Fn

(∇G1 −∇G2)∇′ · (on)ds′


 (55)

5. RESULTS

We compute the impedance elements in the resulting impedance
matrices with great accuracy. We carry out the analytical extraction
of the quasi-singular R−3 and R−1 contributions of the Kernels with
traditional integrating schemes over triangles [1, 26, 27]. The remaining
source contributions and the field testing integrals are computed
numerically with a 9-point Gaussian quadrature rule. Interestingly,
the Müller-formulation results in the advantageous cancelation of
some R−3-contributions. For example, the expression (∇G1 − ∇G2)
in (54) and (55) shows a milder R−1-dependence after the subtraction
process [13]. Similarly, since µ1 = µ2 = µ0 in all tested cases, the
subtraction (µ1∇G1 − µ2∇G2) arising in (48) turns out also R−1-
dependent.

In our tests of RCS accuracy for the div-TO MoM-
implementations we adopt sharp-edged objects with moderately small
electrical dimensions (with electrical dimensions of wavelength frac-
tions) for the following reasons: (i) the presence of sharp-edges is dom-
inant in the scattering process and therefore their influence becomes
relevant for any direction of observation; (ii) it is possible to assess the
convergence of the computed RCS against the number of unknowns
because the required computational requirements for very fine mesh-
ings stay within the available resources. In all the tested cases, we
excite the bodies with a +z-propagating x-polarized plane wave. The
adopted wavelength and free-space wavelength, respectively, for the
perfectly conducting or dielectric bodies is 1 m.
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Figure 2. yz plane cut of
the RCS computed with MFIE
[div-TO], EMFIE [div-TO], EFIE
[RWG], MFIE [RWG] and EMFIE
[Loop-Star] for a PeC-cube with
side 0.1m meshed with 108 trian-
gular facets and wavelength 1 m.
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Figure 3. Backward RCS of
a regular PeC-tetrahedron with
side 0.05 m computed with MFIE
[div-TO], EMFIE [div-TO], EFIE
[RWG], MFIE [RWG] and EMFIE
[Loop-Star]. The wavelength is
1m.

In Figure 2, we present the computed RCS for a perfectly
conducting cube with side 0.1 m discretized with 108 triangular facets.
We see clearly how for this sharp-edged object the computed RCS
patterns with the div-TO discretizations of the Second Kind Integral
Equations, MFIE and EMFIE, MFIE [div-TO] and EMFIE [div-TO],
respectively, reduce the observed discrepancy of the RWG and Loop-
Star discretizations of the MFIE and the EMFIE, MFIE [RWG] and
EMFIE [Loop-Star], with respect to the RWG discretization of the
EFIE, EFIE [RWG].

In Figures 3 and 4, we show, respectively, the backward
and forward RCS against the number of unknowns of the MoM-
implementations EFIE [RWG], MFIE [RWG], MFIE [div-TO] and
EMFIE [div-TO] for a perfectly conducting regular tetrahedron with
side 0.05 m. The gain in RCS accuracy by adopting a div-TO
discretization of MFIE and EMFIE under a given mesh is clearly better
than increasing the number of unknowns for a RWG discretization
by making the mesh finer. Also, we see that the improvement in
the div-TO discretizations is in relative terms much better for less
fine meshings, when the influence of the sharp-edges becomes more
important. The same is observed in Figures 5 and 6 for a regular
tetrahedron with bigger electrical dimensions, with side 1 m (one
wavelength).
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Figure 7. Backward RCS of
a dielectric cube with εr = 4
with side 0.33 m computed with
PMCHWT [RWG], Muller [RWG]
and Muller [div-TO]. The free-
space wavelength is 1 m.

In Figure 7, we validate our MoM-implementations for dielectrics
through the backward RCS plot against the number of unknowns of
a cube with side 0.33m and relative permittivity of 4 (see Figure 3
of [14]). In Figures 8 and 9, we show the forward scattered RCS against
the number of unknowns for two different sharp-edged moderately
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small dielectric regular polyhedra, a cube and a tetrahedron, with low
dielectric contrast (relative permittivities of 3 and 2) and side 0.1 m.
Note how the observed RCS deviation now, in the dielectric case, for
the RWG discretization of the Müller-formulation, Muller [RWG], is
much lower, 0.3 dB at most for very coarse meshings, than in the
perfectly conducting case for the RWG discretizations of the MFIE
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or the EMFIE. For these two cases, the div-TO discretization of the
Müller-formulation, Muller [div-TO], follows the RCS computed with
the PMCHWT-formulation, PMCHWT [RWG], more closely than the
RWG-discretization of the Müller-formulation, Muller [RWG].

In Figures 10 and 11, we show the backward and forward RCS
against the number of unknowns for a cube with side 0.1m and a
high dielectric contrast (εr = 50). Now the observed RCS deviation
for the discretizations of the Müller-formulation is bigger than for
lower dielectric contrasts. In view of these figures, the RWG or
the div-TO sets do not appear as competitive options with respect
to the PMCHWT-formulation, which shows a more stable trend for
convergence.

6. CONCLUSIONS

We present the Taylor-Orthogonal basis functions as a set of basis
functions suitable for the discretization in Method of Moments of
two types of Second Kind Integral Equations: (i) the recently
introduced Electric-Magnetic Field Integral Equation (EMFIE), for
conductors, and (ii) the Müller formulation, for homogeneous or
piecewise homogeneous dielectrics. These basis functions are derived
from the 2D-linear Taylor’s expansion of the current around the
geometric centers of the facets arising from the discretization.
We define the divergence-Taylor-Orthogonal [div-TO] and the curl-
Taylor-Orthogonal [curl-TO] sets as the basis functions capturing,
respectively, the divergence of the current and the normal component
of the curl of the current at the centroids of triangles. We show
that the div-TO implementation of the EMFIE reduces the observed
RCS discrepancy of the RWG and Loop-Star discretizations of the
MFIE and EMFIE, respectively, for moderately small sharp-edged
conductors. Moreover, in view of our tests with moderately small
sharp-edged dielectrics, we observe that the div-TO discretization of
the Müller-formulation better approaches the RCS computed with the
PMCHWT-formulation for sharp-edged objects with low contrasts.
For a cube with high-dielectric contrast, both RWG and div-TO
discretizations of the Müller-formulation show a bigger deviation with
respect to PMCHWT, which shows a stable trend of convergence in
any case. The facet-oriented discretization of the Müller-formulation
presented in this paper allows a straightforward implementation of
the Müller-formulation for composite piecewise homogeneous dielectric
objects. Indeed, assigning unknowns to facets avoids imposing the
normal continuity of the expanded current across the junctions arising
from the intersection of several dielectric regions, as it is required when
the edge-oriented RWG basis functions are adopted [28].
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