Vol. 18
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-06-15
An Extension of the Kelvin Image Theory to the Conducting Heaviside Ellipsoid
By
Progress In Electromagnetics Research M, Vol. 18, 233-246, 2011
Abstract
The Kelvin image theory for a conducting sphere is extended to the case of a conducting oblate spheroid in uniform motion along its axis of revolution (a Heaviside ellipsoid) using the well-known method provided by Special Relativity. The results derived are checked in various ways.
Citation
Dragan Redžić, Mohsan S. A. Eldakli, and Milan D. Redzic, "An Extension of the Kelvin Image Theory to the Conducting Heaviside Ellipsoid," Progress In Electromagnetics Research M, Vol. 18, 233-246, 2011.
doi:10.2528/PIERM11051504
References

1. Redzic, D. V., "Image of a moving spheroidal conductor," Am. J. Phys., Vol. 60, 506-508, 1992.
doi:10.1119/1.16863

2. Maxwell, J. C., A Treatise on Electricity and Magnetism, 3rd edition, Vol. 1, 93-96, 244-252, Clarendon, Oxford, 1891. Reprinted by Dover, New York, 1954.

3. Einstein, A., "Zur Elektrodynamik bewegter Korper," Ann. Phys. Lpz., Vol. 17, 891-921, 1905.
doi:10.1002/andp.19053221004

4. Searle, G. F. C., "On the steady motion of an electrified ellipsoid," Philos. Mag., Vol. 44, 329-341, 1897.

5. Abraham, M., "Zur Theorie der Strahlung und des Strahlungsdruckes," Ann. Phys., Lpz., Vol. 14, 236-287, 1904.
doi:10.1002/andp.19043190703

6. Miller, A. I., Albert Einstein's Special Theory of Relativity: Emer-gence (1905) and Early Interpretation (1905-1911), Addison-Wesley, Reading, MA, 1981.

7. Poincare, H., "Sur la dynamique de l'electron," Rend. Circ. Mat. Palermo, Vol. 21, 129-175, 1906. Reprinted in H. Poincare, LaMecanique Nouvelle, Editions Jacques Gabay, Sceaux, 1989.

8. Schwartz, H. M., "Poincare's Rendiconti paper on relativity. Part II," Am. J. Phys., Vol. 40, 862-872, 1972 Reprinted in J.-P. Hsu and Y.-Z. Zhang, Lorentz and Poincare invariance: 100 years of relativity, World Scientific, Singapore, 2001..
doi:10.1119/1.1986684

9. Ciarkowski, A., "Scattering of an electromagnetic pulse by a moving wedge," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 3, 688-693, 2009.
doi:10.1109/TAP.2009.2013418

10. Ho, M., "Simulation of scattered EM fields from rotating cylinder using passing center swing back grids technique in two dimensions," Progress In Electromagnetics Research, Vol. 92, 79-90, 2009.
doi:10.2528/PIER09030302

11. Cheng, X. X., H. S. Chen, B.-I. Wu, and J. A. Kong, "Cloak for bianisotropic and moving media," Progress In Electromagnetics Research, Vol. 89, 199-212, 2009.
doi:10.2528/PIER08120803

12. Redzic, D. V., "Electromagnetostatic charges and fields in a rotating conducting sphere," Progress In Electromagnetics Research, Vol. 110, 383-401, 2010.
doi:10.2528/PIER10100504

13. Thomson, W., "Extrait d'une lettre a M. Liouville," J. de Mathematiques Pures Appliquees, Vol. 10, 364, 1845.

14. Thomson, W., "Extraits de deux lettres adressees a M. Liouville," J. de Mathematiques Pures Appliquees, Vol. 12, 256, 1847.

15. Thomson, W., (Lord Kelvin), Reprint of Papers on Electrostatics and Magnetism, 2nd edition, Paragraphs 75-127, 208-20, Macmillan, London, 1884.

16. Stratton, J. A., Electromagnetic Theory, 201-205, McGraw-Hill, New York, 1941.

17. Jackson, J. D., Classical Electrodynamics, 3rd edition, Wiley, New York, 1999.

18. Purcell, E. M., Electricity and Magnetism, 2nd edition, McGraw-Hill, New York, 1985.

19. Rosser, W. G. V., An Introduction to the Theory of Relativity, 303-310, Butterworth, London, 1964.

20. Martinez, A. A., "Kinematic subtleties in Einstein's first derivation of the Lorentz transformations," Am. J. Phys., Vol. 72, 790-798, 2004.
doi:10.1119/1.1639011

21. Jammer, M., Concepts of Mass in Classical and Modern Physics, Chapter 11, Harvard U. P., Cambridge, MA, 1961.

22. Redzic, D. V., "Image of a moving sphere and the FitzGerald-Lorentz contraction," Eur. J. Phys., Vol. 25, 123-126, 2004.

23. Brown, H. R., "Physical Relativity: Space-time Structure from a Dynamical Perspective," Clarendon, Oxford, 2005.

24. Redzic, D. V., Recurrent Topics in Special Relativity: Seven Essays on the Electrodynamics of Moving Bodies, authorial edition, Belgrade, 2006.

25. Torres, M., J. M. Gonzalez, A. Martin, G. Pastor, and A. Ferreiro, "On the surface charge density of a moving sphere," Am. J. Phys., Vol. 58, 73-75, 1990.
doi:10.1119/1.16323

26. Redzic, D. V., "On the electromagnetic field close to the surface of a moving conductor," Am. J. Phys., Vol. 60, 275-277, 1992.
doi:10.1119/1.16910

27. Einstein, A. and J. Laub, "Uber die elektromagnetischen Grundgleichungen fur bewegte Korper," Ann. Phys., Lpz., Vol. 26, 532-540, 1908.
doi:10.1002/andp.19083310806

28. Einstein, A. and J. Laub, Ann. Phys., Lpz., Vol. 27, 232, 1908 (erratum)..

29. Einstein, A. and J. Laub, "Bemerkungen zu unserer Arbeit `Uber die elektromagnetischen Grundgleichungen fur bewegte Korper'," Ann. Phys., Lpz., Vol. 28, 445-447, 1909.
doi:10.1002/andp.19093330212

30. Redzic, D. V., "Conductors moving in magnetic fields: Approach to equilibrium," Eur. J. Phys., Vol. 25, 623-632, 2004.

31. Jefimenko, O. D., "Derivation of relativistic force transformation equations from Lorentz force law," Am. J. Phys., Vol. 64, 618-620, 1996.
doi:10.1119/1.18165

32. Redzic, D. V., D. M. Davidovic and M. D. Redzic, "Derivations of relativistic force transformation equations," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 8-9, 1146-1155, 2011.
doi:10.1163/156939311795762178

33. Van Kampen, P., "Lorentz contraction and current-carrying wires," Eur. J. Phys., Vol. 29, 879-883, 2008.
doi:10.1088/0143-0807/29/5/002

34. Redzic, D. V., "Comment on `Lorentz contraction and current-carrying wires'," Eur. J. Phys., Vol. 31, L25-L27, 2010.
doi:10.1088/0143-0807/31/1/N04

35. Hernandez, A. and M. Rivas, "A relativistic problem: The charge distribution stability on a conductor," Am. J. Phys., Vol. 49, 501-503, 1981.
doi:10.1119/1.12496

36. Redzic, D. V., "Various paths to Faraday's law," Eur. J. Phys., Vol. 29, 257-262, 2008.
doi:10.1088/0143-0807/29/2/008

37. Lindell, I. V., G. Dassios, and K. I. Nikoskinen, "Electrostatic image theory for the conducting prolate spheroid," J. Phys. D, Vol. 34, 2302-2307, 2001.
doi:10.1088/0022-3727/34/15/309

38. Lindell, I. V., "Image theory for electrostatic and magnetostatic problems involving a material sphere," Am. J. Phys., Vol. 61, 39-44, 1993.
doi:10.1119/1.17407

39. Lindell, I. V. and K. I. Nikoskinen, "Electrostatic image theory for the dielectric prolate spheroid," Journal of Electromagnetic Waves and Applications, Vol. 15, No. 8, 1075-1096, 2001.
doi:10.1163/156939301X00436

40. Redzic, D. V., "Comment on `Electrostatic image theory for the dielectric prolate spheroid' by I. V. Lindell and K. I. Nikoskinen," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 11, 1625-1627, 2003.
doi:10.1163/156939303772681488

41. Lindell, I. V. and K. I. Nikoskinen, "Electrostatic image theory for the dielectric prolate spheroid, reply to comments by D. Redzic," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 11, 1629-1630, 2003.
doi:10.1163/156939303772681497