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1Faculty of Physics, University of Belgrade, P. O. Box 368, Beograd,
Serbia 11001, Yugoslavia
2Faculty of Engineering and Computing, DCU, Ireland

Abstract—The Kelvin image theory for a conducting sphere is
extended to the case of a conducting oblate spheroid in uniform motion
along its axis of revolution (a Heaviside ellipsoid) using the well-known
method provided by Special Relativity. The results derived are checked
in various ways.

1. INTRODUCTION

Some time ago, we studied electromagnetic images of conducting
spheroids that move uniformly along the axis of revolution with respect
to the laboratory frame [1]. (Following Maxwell [2], we define an
electromagnetic image as a point charge or system of point charges, or
a continuous charge distribution, on one side of a surface which would
produce on the other side of that surface the same electromagnetic
field which the actual charge of that surface really does produce.) Our
argument was based on the well-known method provided by Special
Relativity [3]: start from the corresponding electrostatic image solution
to the problem of a conducting spheroid in its rest frame. Make a
Lorentz boost to the lab frame from the rest frame, taking into account
relativistic length contraction, charge invariance and transformation
formulae for the electric and magnetic fields. In this way we found that
the electromagnetic image of a conducting spheroid in uniform motion
along its axis of revolution is a moving line charge or a point charge or
a charged disc, depending on the shape of the spheroid. That result
was obtained long time ago by Searle [4] using a more cumbersome
method, in the framework of the classical, aether-based interpretation
of Maxwell’s electromagnetic theory.
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Finding the electromagnetic image of a moving spheroid belongs to
a few problems of the electrodynamics of moving bodies whose solution
was known earlier, before the advent of Special Relativity, and which
were solved via the “Frame Hopping Method” in a simple and elegant
way. (The famous examples are Einstein’s calculation of the radiation
pressure of a monochromatic plane linearly polarized electromagnetic
wave on a perfect plane mirror in uniform motion [3, 5, 6] and
Poincaré’s derivation of the electromagnetic field due to a uniformly
moving point charge [7, 8].) While the Frame Hopping Method is the
standard research tool (cf, e.g., [9–12]), simple illustrations of the
method in applications to the as yet unsolved problems seem to be
lacking in the literature. So in this paper we present a generalization
of the Kelvin image theory for a conducting sphere in the field of a
point charge to the case of a moving spheroidal conductor in the field
of a comoving charge. Our analysis leads to results whose analytical
form is quite simple and thus, hopefully, could be helpful for teaching
the electrodynamics of moving bodies.

2. A SUMMARY OF THE KELVIN IMAGE THEORY
FOR A CONDUCTING SPHERE

For the convenience of the reader, we give a brief summary of the
Kelvin image theory for a conducting sphere.

Consider a perfectly conducting sphere of radius a, charged with
an electric charge Q, in the field of a static point charge q at the
distance b from the center, all with respect to their common rest frame
Σ′. The following results are well documented in almost all textbooks
on electromagnetism.

The electrostatic field outside the sphere due to the actual charge
on the sphere is the same as that due to two image point charges. One
of them is located at the distance a2/b from the center and it has the
charge −qa/b; the other image charge is at the center of the sphere and
it has the charge Q+qa/b. While the result is almost always presented
as an application of the uniqueness theorem, it was reached originally
due to a fortunate observation that, in a well-known solution to the
classical electrostatic problem of a point charge outside a perfectly
conducting sphere at zero potential, the Legendre series expressing the
potential due to the actual charge on the sphere can be interpreted
in a simple way as the potential due to a single point charge. This
discovery, which “seems to have been reserved” for the young William
Thomson, later Lord Kelvin, led him to the principle of images ([13–15],
cf also [2, 16]), a powerful method for solving boundary-value problems
in electrostatics and elsewhere.
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Let the origin of the Σ′ frame coincide with the center of the sphere
so that its equation is

x′2 + y′2 + z′2 = a2, (1)
and also choose the x′-axis in such a way that the charge q has
coordinates (b, 0, 0). Since the electrostatic field E′ near a given point
of the surface of a conductor and the surface charge density σ′ at the
given point are related by the law

E′ = (σ′/ε0)n′, (2)
where n′ is outward unit normal to the surface, one easily finds that
the charge density over the surface of the sphere is given by

σ′(x′, y′, z′) =
Q + qa/b

4πa2
− q

4πa

(b2 − a2)
(a2 + b2 − 2bx′)3/2

, (3)

where of course x′, y′, z′ satisfy Equation (1).
The force acting on the charge q is found from Coulomb’s law

f ′→q =
1

4πε0

[
Q + qa/b

b2
ux +

(−qa/b)
(b− a2/b)2

ux

]
q, (4)

and the force acting on the sphere is obtained either directly from
Newton’s third law, or by integrating the electrostatic force on a surface
element of area dS′ over the sphere [17]; the force on the charged
element is σ′dS′E′/2, where σ′ is given by Equation (3) and E′ is the
electrostatic field just outside the surface given by Equation (2) ([18],
cf also [2]).

3. IMAGE THEORY FOR THE HEAVISIDE ELLIPSOID

Now introduce an inertial frame Σ which is in a standard configuration
with respect to the Σ′ frame (Σ′ moves relative to Σ with velocity
V = (V, 0, 0) in the positive direction of their common x, x′ axes, y and
z axes being parallel to the corresponding y′ and z′ axes, respectively,
and the origins of the two frames coincide at t = t′ = 0). The Σ and
Σ′ coordinates are related by the standard Lorentz transformation

x′ = γ(x− V t), y′ = y, z′ = z, t′ = γ(t− V x/c2), (5)

where γ = (1−V 2/c2)−1/2. Also, from the condition that the so-called
source-free Maxwell’s equations ∇ × E = −∂B/∂t, ∇ · B = 0 obey
the principle of Special Relativity, one finds the relations between the
fields E′, B′ and E, B (as measured in Σ′ and Σ, respectively) at the
same point:

E‖ = E′‖, E⊥ = γ[E′⊥ −V ×B′],
B‖ = B′

‖, B⊥ = γ[B′
⊥ + (1/c2)V ×E′], (6)
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where ‖ and ⊥ denote the field components parallel and normal to V,
respectively [3, 19].

Consider now the actual system discussed above as observed from
the Σ frame, with respect to which the conductor and the point charge
q are in uniform motion with the velocity V. In Σ, the conductor has
the shape of a moving ellipsoid whose equation is

γ2(x− V t)2 + y2 + z2 = a2. (7)

Introducing the “present position” coordinates x0, y0, z0 given by

x0 = x− V t, y0 = y, z0 = z, (8)

Equation (7) becomes

γ2x2
0 + y2

0 + z2
0 = a2. (9)

(Note that the “present position” coordinates represent a continuum
of Cartesian coordinate systems, one for each instant of time t, which
are all at rest with respect to one and the same reference system Σ.
By the way, the (tacit) introduction of these coordinates in [3] was a
source of some confusion [20].) Consequently, in Σ, our conductor is
an oblate spheroid uniformly moving at the speed V whose semi-axes
bear the ratio γ−1 : 1 : 1, the shorter semi-axis being parallel to the
direction of motion. The moving ellipsoid (9) is known as a “Heaviside
ellipsoid”, a term introduced by Searle ([4], cf also [21–24]). Thus, in Σ,
taking into account charge invariance, the actual system considered is a
conducting Heaviside ellipsoid carrying a charge Q, uniformly moving
at the speed V , with semi-axes a/γ, a, a, in the field of the comoving
point charge q located on its axis of revolution, at the distance b/γ
from the center of the ellipsoid.

On the other hand, the imaginary system discussed above (the
actual charge q plus two image charges, at rest in Σ′), when considered
from the Σ frame, consists of the actual charge q at the distance b/γ
from the center of the ellipsoid plus the charge Q + qa/b at the center
and the charge −qa/b at the distance a2γ−1/b from the center, all in
uniform motion at the velocity V. The conclusion is a consequence
of relativistic length contraction and charge invariance. We shall now
investigate whether the last two (imaginary) moving charges are the
electromagnetic image of the Heaviside ellipsoid.

The E and B fields in Σ are related to the corresponding E′ and B′
fields in Σ′ by the transformation formulae (6). Thus the components
of the electromagnetic field due to the charged moving spheroid (9) can
be obtained from the electrostatic field of the corresponding charged
sphere at rest (1). By using the same transformation formulae, one
can get the components of the electromagnetic field due to the two
moving charges from the electrostatic field of the corresponding two
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image charges at rest. But the electrostatic field due to the charged
sphere at rest is the same as that due to its two image charges at rest.
It follows that the E and B fields due to the conducting Heaviside
ellipsoid (9) carrying a charge Q, outside the ellipsoid, are the same as
those of two point charges which are moving with the same velocity V
with respect to Σ, the charge Q + qa/b at the center and the charge
−qa/b at the distance a2γ−1/b from the center, under the proviso that
there is also a comoving charge q located on the axis of revolution of
the spheroid, at the distance b/γ from the center (Figure 1). Obviously,
for q = 0 our electromagnetic image system reduces to the well-
known electromagnetic image of an isolated Heaviside ellipsoid, as it
should [1, 4, 22].

Figure 1. A point charge q in front of a conducting body carrying a
charge Q (top) and equivalent electromagnetic image system (bottom)
in their rest frame Σ′ (left) and in the lab frame Σ (right), in which the
body has the shape of a sphere and the Heaviside ellipsoid, respectively;
qK ≡ −qa/b, QK ≡ Q − qK , and √ ≡ (1 − V 2/c2)1/2 ≡ γ−1.
Relativistic effects are depicted accurately for the case b = 2a and
Σ′ moves relative to Σ at a speed V such that γ = 2.
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3.1. The Surface Charge Density on the Heaviside Ellipsoid

One can determine the charge density σ on the surface of the Heaviside
ellipsoid (9) by using relation

σdS = σ′dS′, (10)

where dS and dS′ is area of a surface element of the body in Σ and
Σ′, respectively, and σ′ is given by Equation (3); Equation (10) is a
consequence of charge invariance. A little calculus reveals that area of
an elementary ring of the sphere (1) between two planes orthogonal to
the x′ axis is

dS′ = 2πadx′, (11)

where dx′ is infinitesimal distance between the planes; area of
the corresponding Lorentz-transformed elementary ring in Σ of the
ellipsoid (9) is

dS = 2π
√

a2 + β2γ4x2
0 dx0, (12)

where β = V/c and dx0 = γ−1dx′. From Equations (10)–(12) and (3)
one gets

σ(x0, y0, z0) =
γ√

a2 + β2γ4x2
0

Q + qa/b

4πa

− γq(b2 − a2)√
a2 + β2γ4x2

04π(a2 + b2 − 2bγx0)3/2
, (13)

where x0, y0, z0 satisfy Equation (9). A little reflection, making use of
the uniqueness theorem in the Σ′ frame, reveals the physical meaning
of the second term in expression for σ (13): it is the surface charge
distribution which shields the interior of the Heaviside ellipsoid from
the electromagnetic field of the comoving charge q. Consequently, the
first term in (13) is the surface charge density on an isolated Heaviside
ellipsoid (9) carrying a charge Q + qa/b; as it is well known, it is the
same charge density one would have if an isolated conducting ellipsoid
with the same total charge and of the same geometric shape were at
rest in Σ [4, 25, 26].

Alternatively, one can find the charge density (13) using the
general relationship between the electric field E near a given point
of the surface of a uniformly moving conductor and the surface charge
density σ at the given point. Namely, for a system of conducting bodies
at rest in Σ′ in the electrostatic equilibrium, B′ vanishes everywhere
and E′ = 0 inside the conductors; then Equation (6) imply that in
Σ both E and B vanish inside the conductors and also that at every
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point outside the conductors E and B must be functions of x, y, z and
t of the form

E = E(x0, y0, z0), B = B(x0, y0, z0). (14)

Now applying Gauss’s law to the proper Gaussian pillbox we obtain, in
the same way as in the electrostatic case, that the required relationship
between E and σ reads [26]:

E · n = σ/ε0, (15)

where n is the outward unit normal to the surface at the given point,
since E = 0 inside the moving conductor.

(Note that, in Σ, the tangential component of E does not,
in general, vanish just outside the surface of a uniformly moving
conductor, i.e., the tangential component of E is discontinuous across
the surface of the moving conductor (contrary to what happens in
the electrostatic case or in non-stationary situations across a fixed
boundary between two media). The discontinuity of the tangential
component of E is due to the fact that ∂B/∂t is, in general, infinite
at a point just outside the surface of a uniformly moving conductor.
It is perhaps worthwhile to recall that the problem of boundary
conditions at a moving boundary was somewhat tricky for the pioneers
in the field [27–29]. Note also that some interesting properties of the
electromagnetic field due to a uniformly moving conductor (in the
electrostatic equilibrium in its rest frame) are pointed out in [30].)

One can easily find the outward unit normal n at a given point
of the ellipsoidal surface (9). Namely, introducing f(x0, y0, z0) =
γ2x2

0 + y2
0 + z2

0 − a2, equation of the Heaviside ellipsoid becomes
f(x0, y0, z0) = 0. Then n = (∇f/|∇f |)f=0, which gives

n =
(
γ2x0ux + y0uy + z0uz

) (
γ4x2

0 + y2
0 + z2

0

)−1/2
, (16)

where x0, y0, z0 satisfy Equation (9). On the other hand, the electric
field outside the moving spheroid (9) is the sum of the electric fields Eq,
EQ+qa/b and E−qa/b due to the uniformly moving charges q, Q + qa/b
and −qa/b, respectively. Using the well-known expression for the
electric field of a point charge Q̃ uniformly moving at velocity V

E =
1

4πε0

Q̃R
R3

(
1− V 2

c2

)

(
1− V 2

c2
sin2α

)3/2
, (17)

where R is the position vector of the point of observation relative to
the present location of the charge and α is the angle between R and
V, and also using the law of sines, a little calculation reveals that the
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electric fields due to q, Q+qa/b and −qa/b at a given point just outside
the Heaviside ellipsoid (9) are given by relations

Eq =
1

4πε0

qγ
[(

x0 − bγ−1
)
ux + y0uy + z0uz

]

(a2 + b2 − 2bγx0)3/2
, (18)

EQ+qa/b =
1

4πε0

(Q + qa/b)γ(x0ux + y0uy + z0uz)
a3

, (19)

E−qa/b = − 1
4πε0

qb2γ
[(

x0 − a2γ−1/b
)
ux + y0uy + z0uz

]

(a2 + b2 − 2bγx0)3/2
, (20)

where x0, y0, z0 satisfy Equation (9). Now replacing n and E in
Equation (15) by expression (16) and the sum of the fields (18)–(20),
one obtains that σ is given by Equation (13), as it should be.

3.2. The Force Acting on q and the Charge Distribution
Stability on the Heaviside Ellipsoid

The preceding considerations imply that the electromagnetic force
acting on the comoving charge q in the field of the Heaviside
ellipsoid (9) is simply the Lorentz force by which the electromagnetic
field due to the two comoving charges Q + qa/b and −qa/b acts on q.
Using the fact that the electric field E of a uniformly moving point
charge Q̃ is given by expression (17), and its magnetic field is

B = (1/c2)V ×E, (21)

a simple calculation reveals that the Lorentz force on q, f→q, is

f→q = f ′→q, (22)

where f ′→q is given by Equation (4). Alternatively, the same result is
obtained applying the relativistic force transformation equations (cf,
e.g., [31, 32]) to f ′→q. (Note that application of the relativistic force
transformation equations can be somewhat tricky [33, 34].)

As can be seen, the validity of Newton’s third law for the
electrostatic interaction in Σ′ implies the validity of that law for
the corresponding electromagnetic interaction in Σ. Thus the
electromagnetic force acting on the Heaviside ellipsoid (9) is simply
−f→q. (By the way, it is perhaps worthwhile to point out that
momentum of the electromagnetic field of the system considered (the
Heaviside ellipsoid and the comoving charge q) is time independent;
also, the system considered does not radiate.)

The preceding considerations relate to the problem of how to
calculate the electromagnetic force on an element of surface charge
σdS of a uniformly moving conductor [25, 26]. The solution is simple:
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in Σ′, where the conductor is at rest, the electrostatic force on the
same element of charge σ′dS′ (charge invariance) is dF′ = (σ′dS′/2)E′,
where E′ is the electrostatic field just outside the surface. Applying
the relativistic force transformation equations for the Lorentz force
expression [31, 32] to dF′, one gets that the electromagnetic force on
the surface charge element as measured in Σ is given by

dF = (σdS/2)E∗, (23)

where E∗ ≡ E+V×B, and E and B are the corresponding fields just
outside the surface of the moving conductor.

Now, the E∗ field at a point arbitrarily close to the surface of a
uniformly moving conductor is orthogonal to the surface [26, 35]. For
the convenience of the reader, we give a short proof of this result based
on special relativistic transformations [26].

Figure 2. Conducting sphere charged with an electric charge Q in the
field of a point charge q in their rest frame Σ′ and the same system as
observed from the Σ frame as an oblate spheroid in uniform motion at
a speed V in the field of the comoving charge q; the corresponding E′,
E and E∗ fields at the same point just outside the surface are depicted
accurately for the case b/a = 4/3 and γ = 2.
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Taking into account that B = (1/c2)V × E and V = V ux, and
using Equation (6), one finds that

E∗
x = E′

x, E∗
y = γ−1E′

y, E∗
z = γ−1E′

z; (24)

also, if N = (Nx, Ny, Nz) is a vector perpendicular to the conductor
surface in Σ, then, as can be seen, the corresponding normal vector
in Σ′ is N′ = (Nx/γ, Ny, Nz), due to relativistic length contraction.
Equation (24) and the fact that E′ ×N′ = 0 imply that E∗ ×N = 0.
(Alternatively, using the Hertz-Helmholtz identity (cf, e.g., [36]) and
Faraday’s law ∇ × E = −∂B/∂t, one can prove that the tangential
component of E∗ is continuous across the surface of a uniformly
moving conductor, and then use the fact that E∗ equals zero inside
the conductor [26].)

Thus, the E∗ field just outside the surface of a uniformly
moving conductor is orthogonal to the surface and, consequently, the
electromagnetic force (23) acting on the surface charge element is
orthogonal to the surface, which accounts for the stability of the surface
charge distribution on the conductor. This of course applies to our
conducting Heaviside ellipsoid as well (Figure 2). Namely, taking into
account relation

E∗ = E + (V/c2)× (V ×E) = Exux + γ−2Eyuy + γ−2Ezuz, (25)

and Equations (18)–(20) and (16), one gets E∗ × n = 0, as it should
be.

4. CONCLUDING REMARKS

In this paper, we have presented image theory for the conducting
Heaviside ellipsoid, obtained by Lorentz-transforming the well-known
image solution to the corresponding electrostatic problem. In
the same way, using the Frame Hopping Method provided by
Special Relativity, one can develop image theory for uniformly
moving prolate and oblate (but less oblate than the Heaviside
ellipsoid) conducting spheroids, starting from image solution to the
corresponding electrostatic problem. Unfortunately, the electrostatic
image of a prolate conducting spheroid in the field of a point charge on
its axis is not very simple [37]. Analogous remarks apply to image
theory for a dielectric Heaviside ellipsoid and, more generally, for
any uniformly moving prolate and oblate (but less oblate than the
Heaviside ellipsoid) dielectric spheroid; the corresponding electrostatic
images are somewhat cumbersome [38–41].

Another point is that the form of our results presented above
for the Heaviside ellipsoid is determined by the formulation of the
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corresponding source problem (a conducting sphere at rest in the field
of a stationary q). It is perhaps worthwhile to recast the results in
a more natural form, corresponding to the problem of the Heaviside
ellipsoid with semi-axes aγ−1, a, a in the field of the comoving charge
q at a distance b∗ from the center. The electromagnetic image of the
Heaviside ellipsoid now consists of two comoving charges, the charge
Q+ qaγ−1/b∗ at the center, and the charge −qaγ−1/b∗ at the distance
a2γ−2/b∗ from the center. Equations (13) and (18)–(20) are recast in
the same way, replacing b by b∗γ in them.

Lastly, while our conclusions are reached in the framework of the
special theory of relativity, it should be stressed that Special Relativity
is not actually essential to them. Namely, as can be seen, assuming the
validity of Maxwell’s equations in the Σ frame, our conclusions follow
from a purely mathematical fact that Maxwell’s equations are Lorentz
covariant, in the sense that the primed quantities are considered as
convenient mathematical variables that need not have the familiar
relativistic interpretation
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Grundgleichungen für bewegte Körper,” Ann. Phys., Lpz., Vol. 26,
532–540, 1908.

28. Einstein, A. and J. Laub, Ann. Phys., Lpz., Vol. 27, 232, 1908
(erratum).

29. Einstein, A. and J. Laub, “Bemerkungen zu unserer Arbeit ‘Über
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