Vol. 31
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-07-01
Electromagnetic Analysis of Coaxial Gyrotron Cavity with the Inner Conductor Having Corrugations of an Arbitrary Shape
By
Progress In Electromagnetics Research B, Vol. 31, 339-356, 2011
Abstract
The mathematical approach for the calculation of the membrane functions of a coaxial gyrotron cavity with an arbitrary corrugated inner rod is proposed. It is utilized mainly for two aims. First, it is shown that for typical parameters of the coaxial gyrotron cavity with the corrugated inner conductor the shape of corrugations only slightly influences the eigenvalues of competing eigen-modes. However, it can significantly influence the density of ohmic losses in the inner conductor. In particular, it is shown that the density of ohmic losses can be reduced almost twice by the proper choice of the corrugation shape. Second, it is shown that the usual idealizations of the corrugated surface of the inner conductor (the surface with rectangular grooves, having rounded edges, is approximated by a surface with wedged groves that have sharp edges) are correct. The physical interpretation of the obtained results and their practical meaning are discussed.
Citation
Gennadiy Ivanovich Zaginaylov, and Irina Vladimirovna Mitina, "Electromagnetic Analysis of Coaxial Gyrotron Cavity with the Inner Conductor Having Corrugations of an Arbitrary Shape," Progress In Electromagnetics Research B, Vol. 31, 339-356, 2011.
doi:10.2528/PIERB11051307
References

1. Rzesnicki, T., B. Piosczyk, S. Kern, et al. "2.2-MW record power of the 170-GHz European preprototype coaxial-cavity gyrotron for ITER," IEEE Trans. Plasma Sci., Vol. 38, No. 6, 1141-1149, Jun. 2010.
doi:10.1109/TPS.2010.2040842

2. Zapevalov, V. E., V. I. Khizhnyak, M. A. Moiseev, A. B. Pavelyev, and N. I. Zavolsky , "Advantages of coaxial cavity gyrotrons," Proceedings of the 12th Joint Workshop `Electron Cyclotron Emission and Electron Cyclotron Heating' , 423-432, May 2002.

3. Iatrou, C. T., S. Kern, and A. B. Pavelyev, "Coaxial cavities with corrugated inner conductor for gyrotrons," IEEE. Trans. Microwave Theory Tech., Vol. 44, 56-64, Jan. 1996.
doi:10.1109/22.481385

4. Iatrou, C. T., "Mode selective properties of coaxial gyrotron resonators," IEEE Trans. Plasma Sci., Vol. 24, No. 3, 596-605, Jun. 1996.
doi:10.1109/27.532942

5. Avramides, K., C. Iatrou, and J. Vomvoridis, "Design considerations for powerful continuous-wave second-cyclotron-harmonic coaxial-cavity gyrotrons," IEEE Trans. Plasma Sci., Vol. 32, No. 3, 917-928, 2004.
doi:10.1109/TPS.2004.828781

6. Dumbrajs, O., K. A. Avramides, and B. Piosczyk, "Mode competition in the 170 GHz coaxial gyrotron cavity for ITER," Proc. of Joint 32nd Int. Conf. IRMMW-THz., 48-49, 2007.

7. Barroso, J. J., R. A. Correa, and P. J. Castro, "Gyrotron coaxial cylindrical resonators with corrugated inner conductor: Theory and experiment," IEEE. Trans. Microwave Theory Tech., Vol. 46, No. 9, 1221-1230, Sep. 1998.
doi:10.1109/22.709460

8. Singh, K.P. Jain, and B. Basu, "Analysis of a coaxial waveguide corrugated with wedge-shaped radial vanes considering azimuthal harmonic effects," Progress In Electromagnetics Research, Vol. 47, 297-312, 2004.
doi:10.2528/PIER04010201

9. Piosczyk, B., G. Dammertz, O. Dumbrajs, et al. "A 2MW, 170 GHz coaxial cavity gyrotron | Experimental verification of the design of main components," Journal of Physics: Conference Series, Vol. 25, 24-32, 2005.
doi:10.1088/1742-6596/25/1/004

10. Grundiev, A., J.-Y. Raguin, and K. Schunemann, "Numerical study of mode competition in coaxial gyrotrons with corrugated insert," International Journal of Infrared and Millimeter Waves, Vol. 24, No. 2, Feb.-2003.

11. Gandel, Y. V., G. I. Zaginaylov, and S. A. Steshenko, "Rigorous electromagnetic analysis of coaxial gyrotron cavities," Technical Physics, Vol. 49, 887-894, 2004.
doi:10.1134/1.1778864

12. Ioannidis, Z. C., O. Dumbrajs, and I. O. Tigelis, "Eigenvalues and Ohmic losses in coaxial gyrotron cavity," IEEE Trans. Plasma Sci., Vol. 34, No. 4, 1516-1522, 2006.
doi:10.1109/TPS.2006.876518

13. Ioannidis, Z. C., K. A. Avramides, G. P. Latsas, and I. G. Tigelis, , "Azimuthal mode coupling in coaxial waveguides and cavities with longitudinally corrugated insert," IEEE Trans. Plasma Sci., Vol. 39, No. 5, 1213-1221, 2011.
doi:10.1109/TPS.2011.2118766

14. Dumbrajs, O. and G. I. Zaginaylov, "Ohmic losses in coaxial gyrotron cavity with corrugated insert," IEEE Trans. Plasma Sci., Vol. 32, 861-866, Jun. 2004.
doi:10.1109/TPS.2004.827591

15. Zaginaylov, G. I., N. N. Tkachuk, V. I. Shcherbinin, and K. Schuenemann, "Rigorous calculation of energy losses in cavity of ITER relevant coaxial gyrotron," Proceedings of 35th European Microwave Conference, 1107-1110, 2005.

16. Piosczyk, B., et al. "165-GHz coaxial cavity gyrotron," IEEE Trans. on Plasma Science, Vol. 32, 853-860, Jun. 2004.
doi:10.1109/TPS.2004.827593

17. Collin, R. E., Field Theory of Guided Waves, IEEE Press, 1991.

18. Shcherbina, V. A., "The diffraction problem in periodic solutions," Telecommunication and Radio Engineering, Vol. 61, No. 5, 382-393, 2004.
doi:10.1615/TelecomRadEng.v61.i5.20

19. Mitina, I. V., "Method of numerical analysis of spectrum of flat resonators," Electromagnetic Phenomena, Vol. 5, No. 1, 26-31, 2005.

20. Fliflet, A. W., "Linear and non-linear theory of the Doppler-shifted cyclotron resonance maser based on TE and TM waveguide modes," Int. J. Electronics, Vol. 61, No. 6, 1049-1080, 1986.
doi:10.1080/00207218608920939

21. Katsenelenbaum, B. Z., L. Mercader del Rio, M. Pereyaslavets, M. Sorolla Ayza, and M. Thumm, , Theory of Nonuniform Waveguides: The Cross-section Method, 1998.

22. Hadamard, J., "Le Probleme de Cauchy et Les Equations Aux Derivees Partielles Lineaires Hyperboliques," Hermann & Cie., 1932.

23. Galishnikova, T. N. and A. S. Il'insky, Numerical Methods in the Diffraction Problems, Edition of Moscow University, 1987.

. Il'insky, A. S., A. Ja Slepjan, and G. Ja Slepjan, Propagation, Di®raction and Dissipation of Electromagnetic Waves, The IEE and Peter Peregrinous Ltd. Electromagnetic Waves, 1993.

25. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series and Products, 7th Ed., A. Jeffrey and D. Zwillinger (eds.), Academic Press, 2007.