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Abstract—The mathematical approach for the calculation of the
membrane functions of a coaxial gyrotron cavity with an arbitrary
corrugated inner rod is proposed. It is utilized mainly for two aims.
First, it is shown that for typical parameters of the coaxial gyrotron
cavity with the corrugated inner conductor the shape of corrugations
only slightly influences the eigenvalues of competing eigen-modes.
However, it can significantly influence the density of ohmic losses in
the inner conductor. In particular, it is shown that the density of
ohmic losses can be reduced almost twice by the proper choice of the
corrugation shape. Second, it is shown that the usual idealizations
of the corrugated surface of the inner conductor (the surface with
rectangular grooves, having rounded edges, is approximated by a
surface with wedged groves that have sharp edges) are correct. The
physical interpretation of the obtained results and their practical
meaning are discussed.

1. INTRODUCTION

One of the most successful, advanced and perspective geometries
for cavities of high-power gyrotrons is the coaxial cavity with the
corrugated inner conductor. It can be successfully used in the ITER
relevant gyrotrons of multi-megawat output power [1]. The corrugated
inner conductor plays a very important role, providing efficient mode
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selection, decreasing effect of beam depression, and improving the
possibility of beam energy recovery and frequency tuning [2].

The basic model for the electromagnetic analysis of a coaxial
gyrotron cavity is the surface impedance model (SIM) [3–5] which is
used in several codes [6] for simulation of a coaxial gyrotron operation.
It is rather simple and convenient for use in different simulation
tools. Moreover “cold” measurements have been made to validate the
correctness of this model [7]. On the basis of cold measurements of
resonant frequencies and quality factors it was found that the SIM
provides mostly correct results. Also there exist several other more
complicated approximated models (see, for example, [8] and references
therein) which have the comparable accuracy and almost the same
range of applicability. However, the abovementioned measurements
were made for the eigen-frequencies and parameters of the coaxial
gyrotron cavity that differ from their counterparts of the last version
of the coaxial gyrotron cavity [9]. Due to the restricted applicability
of SIM, several more rigorous approaches have been developed [10–13].
It was found that for the typical parameters of the current versions
of coaxial gyrotrons SIM yields a remarkably overestimated density of
ohmic losses in the corrugated inner conductor compared to the more
rigorous methods [12, 14, 15].

It should be pointed out that ohmic losses in the inner conductor
are one of the most critical aspects, which should be taken into account
during the design of the coaxial gyrotron cavity. The radius of the
corrugated inner conductor should be chosen very carefully in order to
keep the ohmic losses below a certain upper limit on one hand, and
to suppress possible mode competition on the other. A comparison
between the theoretical calculations and experimental results for the
TE31,17 coaxial gyrotron cavity [16] showed that the experimentally
measured losses almost twice exceeded the theoretical predictions
that were based on the SIM. So, compared to the rigorous full wave
calculations, the measured losses are three to four times larger. The
reasons for such a discrepancy are still unclear. However, it should
be pointed that experiments [16] suffered from uncertainties caused
by the short pulse lengths, the limited accuracy of the calorimetric
measurements, and the influence of other heat sources, in particular,
the dissipation of the captured stray radiation at the insert.

Nevertheless, one of the possible reasons can be associated with
the idealizations of the corrugation geometry that were assumed in the
rigorous full wave approaches [10–12]. In order to simplify calculations,
the grooves on the surface of the inner conductor were assumed to
be wedged and to have sharp edges (see Fig. 1(a)). However, in
experiments the form of the grooves is rectangular, edges of the
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corrugations are not infinitely sharp, and they are rounded with a
certain small radius (Fig. 1(b)). Since the width and depth of the
corrugations much smaller than the radius of the inner conductor, the
difference between the wedge-shaped and rectangular grooves appears
to be negligibly small. Nevertheless, the near-fields in close proximity
of the corrugations can be noticeably different at least locally near
edges. The influence of the distinctions between the idealized and
realistic geometry of corrugations on the near-field and the average
density of ohmic losses in the inner conductor is still an open issue. As
is well known, the transverse field components near the sharp edges
grow infinitely as r−1/3, where r is the distance from the 90◦ edge (see,
for example, [17]). Such a behavior leads to the increasing the higher
harmonics. Their contribution which is accurately taken into account
by full wave approaches [10–12] can be overestimated compared to the
more realistic geometry with rounded edges (see, Fig. 1(b)) where the
abovementioned singularity is absent.
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Figure 1. Typical geometry of the cross-section of a coaxial gyrotron
cavity with a corrugated inner conductor; (a) wedged grooves ( the
sides of the grooves are directed along the radial lines) with sharp
edges; (b) rectangular grooves with rounded edges.

In order to inspect the influence of these idealizations on the
calculation of averaged ohmic losses in the corrugated inner conductor,
a substantially new rigorous mathematical approach needs to be
developed. It can be based on a modification of the boundary integral
equation method [18], which was skilfully implemented numerically
in [19]. As opposed to the full wave approaches [10–12], it allow us
to analyze the coaxial gyrotron cavity with an arbitrarily corrugated
inner conductor. Also, such an approach is useful in the study of
the dependence of ohmic losses on the profile of corrugations. Such
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knowledge is of practical interest because it makes possible decrease
the ohmic losses in the inner conductor. One variant of such a profile
is addressed below.

The rest of the paper is organized as follows. In Section 2, the
new approach is described. In Section 3, one of variants of numerical
implementation of the approach developed is presented. Section 4
is devoted to the inspection of the previously obtained results the
idealized geometry. Also, the method of decreasing the ohmic losses
in the inner conductor through proper profiling of corrugations is
addressed. Conclusions are presented in Section 5.

2. FORMULATION OF THE PROBLEM AND MATHE-
MATICAL APPROACH TO ITS SOLUTION

The field in an arbitrary cross-section of a coaxial gyrotron cavity with
a corrugated inner conductor (see, Fig. 1) is very close to the field of
an infinitely long coaxial waveguide with the same cross-section.

Due to this the field of an arbitrary TE mode in a coaxial gyrotron
cavity can be expressed in terms of the normalized magnetic membrane
function ψ(~r⊥), which is a slow function of z [20, 21]:

~E⊥ = A Re
{
f(z)~e(~r⊥)e−iωt

}
,

~H⊥ = A Re
{
− i

µ0ω
~h(~r⊥)

df(z)
dz

e−iωt

}
, (1)

Hz =
1

iµ0ω
rotz

~E = A Re
{
− ik2

⊥
µ0ω

f(z)ψe−iωt

}
,

where ~e(~r⊥) = ~iz × ∇⊥ψ, ~h(~r⊥) = −∇⊥ψ, k⊥ is the transverse
wavenumber, f(z) defines the longitudinal profile of the field, and A
is the constant which is obtained from the balance equation (see, for
example, [12, 14]).

The membrane function depends on z only through the parameters
of the cross-section. It satisfies the Helmholtz equation in the region of
the cross section (which is denoted as Ω) with the Neumann boundary
condition at the boundary of the cross-section (denoted as Σ)

(∆⊥ + k2
⊥)ψ = 0, ~r⊥ ∈ Ω (2)
∂ψ

∂n
= 0, ~r⊥ ∈ Σ (3)

where ~n denotes the outer normal to the contour Σ and the variable z
enters (2) and (3) as a parameter.
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To get the representation for ψ, we use the second Green formula
for the two-dimensional region Ω bounded by the contour Σ:
∫

Ω

(
u

(
∆⊥ + k2

⊥
)
w − w

(
∆⊥+k2

⊥
)
u
)

ds′=
∫

Σ

(
u

∂

∂n
w−w

∂

∂n
u

)
dl′ (4)

Let’s u ≡ ψ and w is the Green function for the Helmholtz
Equation (2) in the infinite two-dimensional space: w(~r, ~r ′) =
1
4Y0

(
k⊥|~r − ~r ′|), where Y0(x) is the Neumann function of zero order.

Afterwards, the index “⊥” in ~r and ~r ′ is omitted. Since (∆ +
k2
⊥)w(~r, ~r ′) = δ(~r − ~r ′), when ~r ∈ Ω, the relation (4) can be reduced

to
ψ(~r) =

1
4

∫

Σ

ψ(~r ′)
∂

∂n(~r ′)
Y0

(
k⊥|~r − ~r ′|) dl′, ~r ∈ Ω. (5)

The representation (5) allows us to express the magnetic
membrane function ψ in the cross-section of the coaxial gyrotron cavity
in terms of its value on the boundary of the cross-section. If ~r → Σ,
the relation (5) becomes an integral equation. It allows us to calculate
the field on Σ, and then, using (5), everywhere in the cross-section.
However, when ~r → Σ the kernel of (5) becomes singular and the
relevant integral does not exist in the common sense of the term. To
make (5) feasible for further consideration, let’s introduce the contour
Σε, which is formed by the points ~rε = ~r − ε~n(~r), where ~r ∈ Σ and ε
is some small parameter (see, Fig. 2). If ~rε ∈ Σε, then (5) is valid and
the integral in (5) exists in the common sense. In order to satisfy the
boundary condition (3), we take the normal derivation of (5) at the
contour Σε and then take the limit of ε → 0. Finally we have:

lim
ε→0

∫

Σ

ψ(~r ′)
∂

∂n(~rε)
∂

∂n(~r ′)
Y0

(
k⊥|~rε − ~r ′|) dl′ = 0. (6)

If we directly put ε = 0 in the kernel of (6) it becomes strongly
singular and non-integrable in the common sense of the term. But
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Figure 2. The positional relationship Σε and Σ.
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if we perform the integration under the limit sign keeping ε to be
finite, the obtained expression will have a definite limit at ε → 0. The
integration in such a manner of strongly singular functions corresponds
to the integration in the sense of Hadamard regularization [22].

3. NUMERICAL SOLUTION

The integral Equation (6) is an eigen-value/eigen-function problem.
The main idea of the numerical analysis of (6) is based on the
discretization of the integral which reduces (6) to a system of linear
algebraic equations (SLAE). To reduce the number of numerical
calculations it is expedient to use the azimuthal periodicity of the
cross-section of the coaxial gyrotron cavity, which leads to the quasi-
periodicity of the unknown function ψ(Pαj~r) = eimαjψ(~r), where m is
the azimuthal index of the mode, Pαj is the operator of rotation by
the angle of αj = 2πj/N in the azimuthal direction, N is the number
of corrugations, and j = 0, 1, 2, . . . , N − 1. Divide the contour Σ by

the contours of periodicity Lj , so Σ =
N−1⋃
j=0

Lj , Pαj~r ∈ Lj . Then the

integral in (6) can be rearranged to
∫

Σ

Fε(~r, ~r ′)ψ
(
~r ′

)
dl′ =

∫

L0

N−1∑

j=0

eimαjFε

(
~r, Pαj~r

′) ψ
(
~r ′

)
dl′,

where Fε(~r, ~r ′) = ∂
∂n(~rε)

∂
∂n(~r ′)Y0

(
k⊥|~rε − ~r ′|).

It is obvious that Fε(~r, Pαj~r
′) = Fε(P−αj~r, ~r

′). Finally, (6) is
reduced to the strongly singular integral equation over the contour of
periodicity:

∗∫

L

G(~r, ~r ′)ψ(~r ′) dl′ = 0, ~r ∈ L,

where G(~r, ~r ′) =
N−1∑
j=0

eimαjF (P−αj~r, ~r
′), and the index zero is omitted.

“*” means that integration should be understood in the following sense
∗∫

L

G(~r, ~r ′)ψ(~r ′) dl′ = lim
ε→0

∫

L

Gε(~r, ~r ′)ψ(~r ′) dl′, (7)

where Gε(~r, ~r ′) =
N−1∑
j=0

eimαjFε(P−αj~r, ~r
′). Performing parameteri-

zation of the contour L: ~r ′ = ~ϕ(s), ~r = ~ϕ(t), where s, t ∈ (a, b), we
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come to the equation
b∗∫

a

K(t, s)g(s)ϕ′(s) ds = 0, (8)

where K(t, s) = G(~ϕ(t), ~ϕ(s)), ϕ′(s) = |~ϕ ′(s)|, g(s) = ψ(~ϕ(s)).
The specific form of ~ϕ(t) depends on the shape of the contour L.

Above, for simplicity, we assume that L is a simply connected contour.
The generalization to more complex contours can be made elementary.
It should be noted that in the case of the coaxial gyrotron cavity L is
doubly connected contour (see, Fig. 3).

ϕs

L

Figure 3. The contour of periodicity of the coaxial gyrotron cavity
with a corrugated inner conductor.

To make a discretization, we choose two sets of points on the
interval (a, b):

si = a + i
(b− a)

n
, i = 0, 1, . . . , n;

tk =
sk−1 + sk

2
, k = 1, 2, . . . , n.

On the internal intervals (si−1, si), i = 2, . . . , n − 1, we
approximate the unknown function g(s) by the interpolational
Lagrange polynomials of the second order:

g(s) ≈ g(ti−1)
(s− ti)(s− ti+1)

(ti−1 − ti)(ti−1 − ti+1)
+ g(ti)

(s− ti−1)(s− ti+1)
(ti − ti−1)(ti − ti+1)

+g(ti+1)
(s− ti−1)(s− ti)

(ti+1 − ti−1)(ti+1 − ti)
. (9)

On the first (s0, s1) and the last (sn−1, sn) intervals, we
approximate g(s) by the interpolational Lagrange polynomials of the
first order:

g(s) ≈ g(t1)
(s− t2)
(t1 − t2)

+ g(t2)
(s− t1)
(t2 − t1)

,

g(s) ≈ g(tn−1)
(s− tn)

(tn−1 − tn)
+ g(tn)

(s− tn−1)
(tn − tn−1)

.

(10)
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After the substitution of (9) and (10) into (8) we should make an
integration. Then, in the obtained relation, we can put t = tk, and
come to the SLAE

n∑

i=1

Mki(k⊥)g(ti) = 0, k = 1, . . . , n. (11)

The details of this procedure can be found in Appendix A.
The non-trivial solution of (11) exists if det ‖Mki(k⊥)‖ = 0, which

yields the dispersion equation to define the transverse wavenumbers
(eigenvalues) of the eigen-modes. Then, using (11) and (5), we can
find the membrane functions everywhere in the cross-section of the
coaxial gyrotron cavity.

4. NUMERICAL RESULTS

4.1. Inspection of Results Concerning the Eigenvalues and
Ohmic Losses Calculations for the Idealized Geometry of
Corrugations

The approach developed allows us to analyze the gyrotron cavities with
an arbitrary form of the cross-section, and in particular to analyze a
coaxial gyrotron cavity with an inner conductor having an arbitrary
form of corrugations. Of interest is to inspect the results obtained
previously for an idealized geometry of corrugations. In particular, it
would be expedient to verify the results for ohmic losses, which are
based on the singular integral equation (SIE) method [14] and the
space harmonic method (SHM) [12, 13]. Both of them provide almost
identical results for ohmic losses that are rather different from those
based on SIM [3]. They rigorously take into account the geometry
of corrugations, but at the same time they essentially use geometrical
idealizations. The question arises whether these notable differences
are caused by geometrical idealizations. It should be pointed out that
SIM doesn’t correctly take into account the geometry of corrugations,
requiring only that the averaged boundary conditions be satisfied.

The numerical calculations were accomplished for the entrance
and the middle cross-sections of the TE34,19 gyrotron cavity and
were compared to the SIE results. In the middle cross-section f(z)
and ohmic losses are maximal. The parameters of the middle cross-
section are: R0 = 29.55mm, Ri = 7.86mm, L = RiϕL = 0.35mm,
d = 0.44 mm, N = 75. At the entrance cross-section (R0 =
28.397mm, Ri = 8.384mm, other parameters are the same) f(z) and,
consequently, ohmic losses are much smaller and, therefore, were not
calculated.
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The results of the calculations of the averaged density of ohmic
losses and normalized eigenvalues for rectangular and wedged grooves
at different rounding radii r0 for the operational TE34,19 mode are
summarized in Table 1.

For calculations we used the expression which follows from the
energy balance of the coaxial gyrotron cavity

ρ =
1

2πRi

∫

Σ

(
~E × ~H

)
n

dl =
1

4πRi
δk2
⊥

QdiffPout
zout∫
0

|f(z)|2 dz

∫

Σ

|ψ|2 dl,

where Ri is the maximal radius of the corrugated inner conductor,
the top line means the averaging over the oscillation period, Qdiff is
the diffractive quality factor, Pout is the output power, δ =

√
2

σωµ0

is the skin depth, µ0 is the vacuum magnetic permeability, and zout

is the length of the coaxial gyrotron cavity. We also assumed that
Pout = 2.2MW, Qdiff = 1662, and σ = 1.4 ·107 S/m is the conductivity
of the wall material. It should be pointed out that for the case
considered δ ≈ 3.26 · 10−4 mm.

Table 1. Dependencies of eigenvalues and ohmic losses on the
rounding radius r0.

r0, mm

Rectangular

grooves with

rounded edges

Wedged grooves

with rounded

edges

SIE, wedged

groves with

sharp edges

χ = R0k⊥ ρ, kw/cm2 χ ρ χ ρ

Middle cross-section

0 105.1942 - 105.1942 0.0308 105.1942 0.0308

10−3 105.1942 0.0291 105.1942 0.0307 - -

10−2 105.1942 0.0289 105.1942 0.0305 - -

0.025 105.1943 0.0288 105.1943 0.0305 - -

0.05 105.1944 0.0292 105.1944 0.031 - -

0.08 105.1946 0.0306 105.1946 0.0322 - -

Entrance cross-section

0 105.2314 - 105.2324 - 105.2325 -

10−3 105.2314 - 105.2324 - - -

10−2 105.2319 - 105.2328 - - -

0.025 105.2331 - 105.2339 - - -

0.05 105.2358 - 105.2367 - - -

0.08 105.2400 - 105.2409 - - -
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Point out that in the expression for ρ the contribution of the
transverse magnetic field ~H⊥ has been neglected. Rough estimations
for the rounded corrugations and SIE numerical calculations for r0 = 0
show that in the middle cross-section it is inessential.

According to the results obtained, the averaged density of ohmic
losses for both wedged grooves with rounded edges and rectangular
grooves with rounded edges agree well with the SIE results for the
idealized geometry (within an accuracy of 5%) for rounding radii inside
the interval 0.001–0.08mm. Moreover, in the case of rectangular
grooves with a rounding radius of about 0.025mm, the losses were
minimal. For lager rounding radii (0.08–0.1 mm), losses somewhat
increased. At both cross-sections, the eigenvalues only slightly depend
on the rounding radius. Taking into account that the field distribution
at the entrance cross-section is the most sensitive to the inner insert,
one can conclude that the eigenvalues depend negligibly on the
rounding radius all inside the gyrotron cavity. Such a dependence
does not lead to a recognizable change of the resonant frequency and
the quality factor of the operational mode.

Also, it was found that only the field in the vicinity of the rounding
is sensitive to the value of the rounding radius (see Fig. 4. Here and
in Fig. 6 all snapshots have the same normalization).

(a) (b) (c)

Figure 4. Distribution of |Hz| inside and near the groove of the
rectangular shape (arbitrary units): (a) r0 = 0.01mm, (b) r0 =
0.025mm, (c) r0 = 0.1mm.

We can see that the field on the bottom of the grooves is maximal,
providing a significant contribution to the total ohmic losses (about
50%), regardless of rounding radius. It was also found earlier on
the basis of other approaches [12, 15]. For the wedged groove the
distribution of |Hz| is very similar and also slightly depends on the
rounding radius.
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4.2. Investigation of Influence of Shape of Corrugations on
Eigenvalues and Ohmic Losses in the Inner Conductor. The
Possibility of Decrease of the Ohmic Losses in the Inner
Conductor

Having such a universal technique, it would be interesting to investigate
the influence of the groove shape on the ohmic losses in the inner
conductor. However, a complete and detailed investigation of this issue
is rather extensive and can be a subject of a separate publication. Here,
we consider only the special case in which a decrease of ohmic losses
can be provided. From the comparative analysis of the results for
wedged and rectangular grooves, we can see that rectangular grooves
provide slightly lower losses than wedged ones. So, probably, grooves
with the width increasing towards the bottom (see, Fig. 5) can provide
a further decrease in ohmic losses.

γ

Figure 5. Grooves with the width increasing towards the bottom.

In this case, the shape of the grooves can be defined by the angle γ.
Results for ρ and χ at different γ and r0 = 0.01 mm are presented in
Table 2. Other parameters are the same as in Table 1.

Table 2. Dependence of losses and eigenvalues on γ.

γ, rad
Middle cross-section Entrance cross-section

χ ρ, kw/cm2 χ

1.593 105.1943 0.0306 105.2330

1.539 105.1941 0.0269 105.2305

1.481 105.1940 0.024 105.2284

1.413 105.1939 0.0215 105.2264

1.344 105.1939 0.0196 105.2247

1.276 105.1938 0.0182 105.2232

Thus, using grooves with the width, increasing to the bottom,
one can make ohmic losses in the corrugated insert notably lower,
keeping the eigenvalue almost the same. According to the calculations
of the field distribution inside and near the groove illustrated in Fig. 6
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(a) (b) (c) (d)

Figure 6. Distribution of |Hz| inside and near the groove with
the width increasing towards the bottom (arbitrary units): (a) γ =
1.35 rad, (b) γ = 1.46 rad, (c) γ = 90◦ (rectangular grooves), (d)
wedged grooves.

the field that penetrates to the bottom of grooves is substantially
weaker. Most likely, it can be connected with more intensive and
numerous reflections of the field inside the groove and with the
increased volume of the groove. As a result, due to self-interference
the field distributes inside the increased volume of the groove more
homogeneously, decreasing at the boundary of the groove. It should
be pointed out that in the case of γ < 1.35, the narrowest depth of
the corrugation is less than 0.1 mm. It can cause problems with the
fabrication and exploitation of such components. They can not be
manufactured directly. Only manufacturing via electroplating would
be possible, while some technical problems also occur. However, the
main goal of the example considered to show the possibility of reduction
of losses due to a proper choice of the corrugation shape. The practical
optimization can be continued further, compromising all technical
requirements.

5. CONCLUSION

The rigorous mathematical technique for the analysis of the coaxial
gyrotron cavity with an arbitrarily corrugated insert has been
demonstrated. In the current straightforward variant of numerical
analysis, we use the idea of the direct discretization of the strongly
singular integral equation [18, 19]. In the case at hand, the strong
singularity in the kernel increases the conditionality of the problem and
stability of the numerical calculations. In this regard, the approach
developed can be a reasonable alternative to the more traditional
consideration based on (5), which can be reduced to the second kind
Fredholm integral equation [23]. After the discretization we have
SLAE with the diagonal dominance, since the kernel grows rapidly
at ~r ′ → ~r. Due to this, it provides the same convergence and stability
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of numerical results as the second kind Fredholm integral equation.
Such an approach can be especially useful in the problems when
the strong singularity can not be avoided (for example, waveguides
with anisotropic media or more complex boundary conditions and so
forth), and the traditional regularization is associated with significant
analytical or numerical difficulties.

The developed technique allows us to consider in detail at least
two important aspects. Both of them have concern not only to coaxial
gyrotron cavities but also can be interesting for other microwave
devises and even more widely for microwave engineering.

First, many microwave devices include components that have
almost sharp metallic edges. Very often, for simplicity, the idealized
geometry is considered, which neglects the small natural rounding
near the sharp edges. Such an idealization provokes the appearance
of an integrable singularity in field components. The macroscopic
consequences of such an idealization are often not clearly understood.
Indeed, the idealized perfectly conducting boundary condition Eτ = 0
(which here is expressed by (3)) is the limiting case of the impedance
boundary conditions. In turn, the impedance boundary conditions are
rigorously valid only in the case of r0 À δ, where r0 is the radius
of a surface curvature. So, near the sharp edge (r0 = 0), the ideal
and even impedance boundary conditions are not correct. Therefore,
the feasibility of such an idealization in many practical cases is an
open question and should be inspected. Some qualitative discussion
on this issue however without any calculational confirmation can be
found in [24].

For the case at hand, the geometrical idealizations assumed earlier
in calculations of ohmic losses by full wave approaches [11, 12] are
entirely reasonable. They do not influence results and can not be the
reasons for the discrepancy between the theoretical predictions and the
experimental measurements of the ohmic losses in the inner conductor
revealed in [16] for the TE31,17 coaxial gyrotron cavity.

Second, ohmic losses in the walls of resonators is the general
problem of vacuum high-power microwave sources and particle
accelerators. Therefore finding methods of decreasing ohmic losses
is of general interest. In particular, a remarkable decrease of ohmic
losses in the corrugated inner conductor of the coaxial gyrotron cavity
was revealed earlier for the wedged grooves with sharp edges [15]. It
can be achieved by the proper choice of the depth of grooves. However,
this method can hardly be used to improve the ITER relevant coaxial
gyrotrons, since the depth of the grooves should be kept inside the
interval 0.2 < d/λc < 0.25, where λc is the cutoff wavelength of
the operational mode, to avoid self-excitation on the higher cyclotron
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harmonics [3, 5].
Results obtained here show that another way in which the

remarkable decreasing the ohmic losses is also possible. It can
be based on a proper choice of the corrugation shape. One type
of shape that yields reduced ohmic losses has been demonstrated.
Namely, corrugations with the width increasing towards the bottom
provide substantially lower ohmic losses compared to the rectangular
corrugations currently used in coaxial gyrotron cavities.

At the same time, it is shown that the eigenvalues of the
eigenmodes and, consequently, the resonant frequencies and quality
factors are not sensitive to the shape of corrugations. So, specific mode
selection properties of the coaxial gyrotron cavity are conserved at such
changes of the shape of the grooves. So, this fact can be utilized for
decreasing ohmic losses in the inner conductor and can be,in practice,
exploited for the optimization of the coaxial gyrotron cavities.

Concerning the basic physics of this effect one should be mentioned
that, in accordance with the field distribution inside corrugations (see
Fig. 6), such a form of corrugations prevents the penetration of the
field to the bottom of the grooves due to numerous reflections and
self-interference inside the grooves. Also due to these effects the field
distributes more uniformly inside the increased volume of the groove.
Therefore, the substantial decrease of the field at the groove walls is
achieved. For the case at hand, ohmic losses in the corrugated inner
conductor can be even lower than those in the case of the smooth inner
conductor.

The obtained results can be useful for sophistication of
mathematical description of resonators in high-power microwave
sources and improvement of their performance.
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APPENDIX A.

After the interpolation of the unknown function g(s) by the Lagrange
polynomials (see (9), (10)) and inserting it into (8) in order to find the
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matrix coefficients Mki(k⊥), we should calculate the integrals of the
kind

Ip
k =

b∗∫

a

K(tk, s)spϕ′(s) ds = lim
ε→0

b∫

a

Kε(tk, s)spϕ′(s) ds (A1)

for p = 0, 1, 2. Here we denote

Kε(t, s) = Gε(~r(t), ~r ′(s)) = G(~ϕ(t)− ε~n(t), ~ϕ(s)), ~n(t) = ~n(~ϕ(t)).

The direct numerical integration of (A1) is impossible, since the
integral becomes divergent at ε → 0. In order to circumvent this we
should extract the singular part from the kernel in such a way which
allows us to evaluate the relevant singular integral analytically and then
take the limit of ε → 0. The regular part of the integral is discretized
directly. For the sake of convenience, we perform the extracting in two
steps.

First, using the asymptotic of the Neumann function at small
arguments and ∂

∂n(~r) = (~n(~r), ∂
∂~r ), we represent Gε(~r, ~r ′) as a sum of

two parts. One of them remains regular and another becomes singular
at ~r = ~r ′, ε → 0:

Gε(~r, ~r ′) = G1ε(~r, ~r ′) + G2ε(~r, ~r ′), (A2)

where

G1ε(~r, ~r ′) =
2
π

∂2

∂n(~rε) ∂n(~r ′)
ln k⊥Rε − 1

π
(~n(~rε), ~n(~r ′)) ln k⊥Rε

is singular, and G2ε(~r, ~r ′) is some regular function. Here we denote
Rε = |~rε − ~r ′|. It should be noted that the singularity can appear
only in the term of the sum with j = 0. Respectively, Kε(t, s) =
K1ε(t, s) + K2ε(t, s), where K1,2ε(t, s) = G1,2ε(~ϕ(t), ~ϕ(s)).

Second, using the identity [18]

∂2

∂n(~rε) ∂n(~r ′)
= − ∂2

∂τ(~rε) ∂τ(~r ′)
,

where ~τ(~rε) = ~τ(~r) = ~ϕ ′(t)/ϕ′(t) is the unit tangent vector to the
contour in the point ~rε (see, Fig. 2), and ~r ′ ≈ ~ϕ(t) + ~ϕ ′(t)(s −
t) + O(s − t)2 at s → t, K1ε(t, s) can be presented as K1ε(t, s) =
KSε(t, s) + KRε(t, s), where

KSε(t, s) = − 2
π

1
ϕ′(t)

∂

∂t

(
1

ϕ′(s)
∂

∂s
ln

(
k⊥|~ϕ ′(t)(s− t)− ε~n(t)|)

)

− 1
π

ϕ′(t)
ϕ′(s)

ln
(
k⊥|~ϕ ′(t)(s− t)− ε~n(t)|),
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KRε(t, s) is the regular function. Since ~n(t) ⊥ ~ϕ ′(t), we have

|~ϕ ′(t)(s − t) − ε~n(t)| =
√

ϕ′2(t)(s− t)2 + ε2. KSε(t, s) is singular at
s → t, ε → 0. However, integration of KSε(tk, s) can be performed
analytically at a finite ε:

b∫

a

KSε(t, s)spϕ′(s) ds = − 1
πϕ′(t)

d

dt
Jp

1 (t)− 1
2π

ϕ′(t)Jp
2 (t),

where

Jp
1 (t) =

b∫

a

sp ∂

∂s
ln

(
k⊥

(
ϕ′2(t)(s− t)2 + ε2

))
ds

= sp ln
(
k⊥

(
ϕ′2(t)(s− t)2 + ε2

)) ∣∣∣
b

a
−(δ1p + δ2p)pIp−1

2 (t),

Jp
2 (t) =

b∫

a

sp ln
(
k⊥

(
ϕ′2(t)(s− t)2 + ε2

))
ds,

δik is the Kronecker delta. The last integral is the table integral [25]
and exists also at ε = 0.

Now, putting in Ip
1,2(t), KRε(t, s) and K2ε(t, s) t = tk and ε = 0,

we have

Ip
k = − 1

π

(
2

ϕ′(t)
d

dt
Jp

1 (t) +
1
π

ϕ′(t)Jp
2 (t)

) ∣∣∣∣
t=tk,ε=0

+

b∫

a

(KR(tk, s) + K2(tk, s)) spϕ′(s) ds, (A3)

where KR,2(t, s) = lim
ε→0

KRε,2ε(t, s).

Integration of the last term in (A3) can be performed using
interpolation formulas like (9) and (10) or any standard methods of
numerical integration.
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