Vol. 31
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-06-06
Low-Cost Parameter Extraction and Surrogate Optimization for Space Mapping Design Using EM-Based Coarse Models
By
Progress In Electromagnetics Research B, Vol. 31, 117-137, 2011
Abstract
Space mapping (SM) is one of the most popular surrogate-based optimization techniques in microwave engineering. The most critical component in SM is the low-fidelity (or coarse) model --- a physically-based representation of the structure being optimized (high-fidelity or fine model), typically evaluated using CPU-intensive electromagnetic (EM) simulation. The coarse model should be fast and reasonably accurate. A popular choice for the coarse models are equivalent circuits, which are computationally cheap, but not always accurate, and in many cases even not available, limiting the practical range of applications of SM. Relatively accurate coarse models that are available for all structures can be obtained through coarsely-discretized EM simulations. Unfortunately, such models are typically computationally too expensive to be efficiently used in SM algorithms. Here, a study of SM algorithms with coarsely-discretized EM coarse models is presented. More specifically, novel and efficient parameter extraction and surrogate optimization schemes are proposed that make the use of coarsely-discretized EM models feasible for SM algorithms. Robustness of our approach is demonstrated through the design of three microstrip filters and one double annular ring antenna.
Citation
Slawomir Koziel, and Leifur Leifsson, "Low-Cost Parameter Extraction and Surrogate Optimization for Space Mapping Design Using EM-Based Coarse Models," Progress In Electromagnetics Research B, Vol. 31, 117-137, 2011.
doi:10.2528/PIERB11050602
References

1. Bandler, J. W., Q. S. Cheng, S. A. Dakroury, A. S. Mohamed, M. H. Bakr, K. Madsen, and J. S¿ndergaard, "Space mapping: The state of the art," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 1, 337-361, Jan. 2004.
doi:10.1109/TMTT.2003.820904

2. Swanson, D. and G. Macchiarella, "Microwave filter design by synthesis and optimization," IEEE Microwave Magazine, Vol. 8, No. 2, 55-69, Apr. 2007.
doi:10.1109/MMW.2007.335529

3. Forreste, A. I. J. and A. J. Keane, "Recent advances in surrogate-based optimization," Prog. in Aerospace Sciences, Vol. 45, No. 1--3, 50-79, Jan. 2009.
doi:10.1016/j.paerosci.2008.11.001

4. Rayas-Sanchez, J. E., "EM-based optimization of microwave circuits using artificial neural networks: The state-of-the-art," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 1, 420-435, Jan. 2004.
doi:10.1109/TMTT.2003.820897

5. Kabir, H., Y. Wang, M. Yu, and Q. J. Zhang, "Neural network inverse modeling and applications to microwave filter design," IEEE Trans. Microwave Theory Tech., Vol. 56, No. 4, 867-879, Apr. 2008.
doi:10.1109/TMTT.2008.919078

6. Kabir, H., Y. Wang, M. Yu, and Q. J. Zhang, "High-dimensional neural-network technique and applications to microwave filter modeling," IEEE Trans. Microwave Theory Tech., Vol. 58, No. 1, 145-156, Jan. 2010.
doi:10.1109/TMTT.2009.2036412

7. Meng, J. and L. Xia, "Support-vector regression model for millimeter wave transition," Int. J. Infrared and Millimeter Waves, Vol. 28, No. 5, 413-421, May 2007.
doi:10.1007/s10762-007-9212-1

8. Xia, L., J. Meng, R. Xu, B. Yan, and Y. Guo, "Modeling of 3-D vertical interconnect using support vector machine regression," IEEE Microwave Wireless Comp. Lett., Vol. 16, No. 12, 639-641, Dec. 2006.
doi:10.1109/LMWC.2006.885585

9. Martinez-Ramon, M. and C. Christodoulou, "Support vector machines for antenna array processing and electromagnetics," Synthesis Lectures on Computational Electromagnetics, Vol. 1, No. 1, 2006.
doi:10.2200/S00020ED1V01Y200604CEM005

10. Miraftab, V. and R. R. Mansour, "EM-based microwave circuit design using fuzzy logic techniques," IEE Proc. Microwaves, Antennas & Propagation, Vol. 153, No. 6, 495-501, Dec. 2006.
doi:10.1049/ip-map:20050190

11. Miraftab, V. and R. R. Mansour, "A robust fuzzy-logic technique for computer-aided diagnosis of microwave filters," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 1, 450-456, Jan. 2004.
doi:10.1109/TMTT.2003.820895

12. Zhai, J., J. Zhou, L. Zhang, and W. Hong, "Behavioral modeling of power amplifiers with dynamic fuzzy neural networks," IEEE Microwave and Wireless Comp. Lett., Vol. 20, No. 9, 528-530, 2010.
doi:10.1109/LMWC.2010.2052594

13. Shaker, G. S. A., M. H. Bakr, N. Sangary, and S. Safavi-Naeini, "Accelerated antenna design methodology exploiting parameterized Cauchy models," Progress In Electromagnetic Research B, Vol. 18, 279-309, 2009.
doi:10.2528/PIERB09091109

14. Koziel, S., J. W. Bandler, and K. Madsen, "A space mapping framework for engineering optimization: Theory and implementation ," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 10, 3721-3730, Oct. 2006.
doi:10.1109/TMTT.2006.882894

15. Amari, S., C. LeDrew, and W. Menzel, "Space-mapping optimization of planar coupled-resonator microwave filters," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 5, 2153-2159, May 2006.
doi:10.1109/TMTT.2006.872811

16. Crevecoeur, G., L. Dupre, and R. van de Walle, "Space mapping optimization of the magnetic circuit of electrical machines including local material degradation," IEEE Trans. on Magnetics, Vol. 43, No. 6, 2609-2611, Jun. 2007.
doi:10.1109/TMAG.2007.893409

17. Quyang, J., F. Yang, H. Zhou, Z. Nie, and Z. Zhao, "Conformal antenna optimization with space mapping," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 2--3, 251-260, 2010.

18. Rautio, J. C., "Perfectly calibrated internal ports in EM analysis of planar circuits ," IEEE MTT-S Int. Microwave Symp. Dig., 1373-1376, Jun. 2008.

19. Koziel, S., J. Meng, J. W. Bandler, M. H. Bakr, and Q. S. Cheng, "Accelerated microwave design optimization with tuning space mapping," IEEE Trans. Microwave Theory and Tech., Vol. 57, No. 2, Feb. 2009.

20. Cheng, Q. S., J. C. Rautio, J. W. Bandler, and S. Koziel, "Progress in simulator-based tuning | The art of tuning space mapping," IEEE Microwave Magazine, Vol. 11, No. 4, 96-110, Jun. 2010.
doi:10.1109/MMM.2010.936477

21. Koziel, S., "Shape-preserving response prediction for microwave design optimization," IEEE Trans. Microwave Theory and Tech., Vol. 58, No. 11, 2829-2837, 2010.
doi:10.1109/TMTT.2010.2078890

22. Koziel, S., J. W. Bandler, and K. Madsen, "Quality assessment of coarse models and surrogates for space mapping optimization," Optimization and Engineering, Vol. 9, No. 4, 375-391, 2008.
doi:10.1007/s11081-007-9032-0

23. Bandler, J. W., Q. S. Cheng, N. K. Nikolova, and M. A. Ismail, "Implicit space mapping optimization exploiting preassigned parameters ," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 1, 378-385, Jan. 2004.
doi:10.1109/TMTT.2003.820892

24. Koziel, S., "Surrogate-based optimization of microwave structures using space mapping and kriging," European Microwave Conference, 1062-1065, Sep. 2009.

25. Hennings, A., E. Semouchkina, A. Baker, and G. Semouchkin, "Design optimization and implementation of bandpass filters with normally fed microstrip resonators loaded by high-permittivity dielectric ," IEEE Trans. Microwave Theory and Tech., Vol. 54, No. 3, 1253-1261, Mar. 2006.
doi:10.1109/TMTT.2006.869709

26. FEKO, Suite 6.0, 2010.

27. Matlab, Version 7.6, The MathWorks, Inc., 3 Apple Hill Drive, Natick, and MA 01760-2098, , 2008.

28. Lee, J. R., J. H. Cho, and S. W. Yun, "New compact bandpass ¯lter using microstrip λ/4 resonators with open stub inverter," IEEE Microwave and Guided Wave Letters, Vol. 10, No. 12, 526-527, Dec. 2000.
doi:10.1109/75.895091

29. Brady, D., "The design, fabrication and measurement of microstrip ¯lter and coupler circuits," High Freq. Electronics, Vol. 1, No. 1, 22-30, Jul. 2002.

30. Kokotoff, D. M., J. T. Aberle, and R. B. Waterhouse, "Rigorous analysis of probe-fed printed annular ring antennas," IEEE Trans. Antennas Propagat., Vol. 47, No. 2, 384-388, Feb. 1999.
doi:10.1109/8.761079

31. Echeverria, D. and P. W. Hemker, "Space mapping and defect correction," CMAM The International Mathematical Journal Computational Methods in Applied Mathematics, Vol. 5, No. 2, 107-136, 2005.

32. Koziel, S., J. W. Bandler, and K. Madsen, "Space mapping with adaptive response correction for microwave design optimization," IEEE Trans. Microwave Theory Tech., Vol. 57, No. 2, 478-486, 2009.
doi:10.1109/TMTT.2008.2011243