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Abstract—Space mapping (SM) is one of the most popular surrogate-
based optimization techniques in microwave engineering. The most
critical component in SM is the low-fidelity (or coarse) model —
a physically-based representation of the structure being optimized
(high-fidelity or fine model), typically evaluated using CPU-intensive
electromagnetic (EM) simulation. The coarse model should be fast
and reasonably accurate. A popular choice for the coarse models are
equivalent circuits, which are computationally cheap, but not always
accurate, and in many cases even not available, limiting the practical
range of applications of SM. Relatively accurate coarse models that
are available for all structures can be obtained through coarsely-
discretized EM simulations. Unfortunately, such models are typically
computationally too expensive to be efficiently used in SM algorithms.
Here, a study of SM algorithms with coarsely-discretized EM coarse
models is presented. More specifically, novel and efficient parameter
extraction and surrogate optimization schemes are proposed that make
the use of coarsely-discretized EM models feasible for SM algorithms.
Robustness of our approach is demonstrated through the design of
three microstrip filters and one double annular ring antenna.

1. INTRODUCTION

Accurate and reliable performance prediction of microwave devices
requires electromagnetic (EM) simulation. In particular, EM
simulation is the only option when interactions of the microwave
device and its environment, such as the antenna housing, the
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connectors, and the feeding structure, are to be taken into account.
Nowadays, EM simulation is central in microwave engineering
design and optimization [1, 2]. There are problems associated with
exploiting EM simulation in design optimization, e.g., accurate EM
simulation is computationally expensive, and, typically, the results
obtained include numerical noise. Moreover, conventional optimization
algorithms normally require large number of objective function calls.
Consequently, direct EM-simulation-driven optimization is — in many
cases — impractical. Due to this, design improvement is often carried
out through parameter sweeps (usually, one parameter at a time),
which is time consuming and may not yield an optimized design.

Efficient EM-simulation-driven design can be realized using
surrogate-based optimization (SBO) [3]. The SBO techniques
employed in microwave engineering are either based on approximation
models (such as neural networks [4–6], support-vector regression [7–
9], fuzzy systems [10–12], Cauchy approximation [13]), or physically-
based surrogates (such as space mapping [1, 14–17] or simulation-based
tuning [18–20]). Methods exploiting approximation models are quite
versatile, but a large set of training samples is normally necessary to
create the surrogate, which requires a substantial computational effort.
These approaches are, therefore, more suitable for creating library
models for multiple uses, such as the design of a specific class of devices.
The methods exploiting physically-based surrogates, on the other
hand, normally require a rather limited number of simulation runs to
yield an optimized design, and, therefore, are more attractive for ad-
hoc optimization. The physically-based surrogates are constructed by
correcting an underlying low-fidelity model, which can be based on one
of, or a combination of (1) simplified physics, (2) coarse discretization,
and (3) relaxed convergence criteria [3]. The surrogate then serves as a
prediction tool of the performance of the structure under consideration
in the optimization loop in place of the CPU-intensive high-fidelity (or
fine) model [1]. The key points here are that such a correction may
be relatively cheap (in extreme cases, it can be based on a single high-
fidelity model evaluation), and the number of correction-prediction
cycles necessary to find a satisfactory design may be small, yielding
a computationally efficient design process [14].

The focus of this paper is on space mapping (SM) [14], which
is probably the most popular surrogate-based [3] design optimization
methodology in microwave engineering to date. Compared to other
methods utilizing physically-based surrogates, SM seems to be the
most general. In particular, unlike tuning, SM is not invasive [19],
i.e., it does not require any modification of the structure of interest,
and, unlike shape-preserving response prediction [21], SM does not
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make any assumptions about the relationships between the low- and
high-fidelity model responses.

The low-fidelity (or coarse) model is critical for SM perfor-
mance [22]. It should be computationally cheap (so that its multiple
evaluations do not affect the optimization cost significantly) and, at
the same time, relatively accurate. The latter ensures that the SM
surrogate model — constructed from the coarse model — is reliable,
which allows the SM algorithm to yield a satisfactory design after a
few fine model evaluations.

Equivalent circuit models are typically favored as coarse models
due to their low computational cost [1]. However, circuit models
are not always sufficiently accurate, and, more importantly, they are
not available for many structures, such as antennas, and substrate-
integrated circuits. Coarsely-discretized EM models are the most
generic types of coarse models and are available for all kinds of
microwave structures. Coarsely-discretized EM models can be made as
accurate as required by controlling the discretization density. However,
they are rather expensive with typical evaluation time ratio between
the fine and coarsely-discretized EM coarse model between 5 to
50. Consequently, the total evaluation time for the coarse model
(due to parameter extraction and surrogate model optimization) may
determine the space mapping optimization cost.

In this paper, we formulate a specific surrogate model setup
for the SM algorithm working with coarsely-discretized EM coarse
models, including schemes for an efficient parameter extraction and
surrogate model optimization. By making use of relatively accurate
and expensive coarse models, our approach allows for a substantial
reduction of the number of coarse model evaluations. The efficiency of
the proposed technique is demonstrated through the design of several
microwave structures.

2. SPACE MAPPING OPTIMIZATION

In this section, we briefly review the basics of space mapping
optimization, and discuss various aspects of its most important
component: the coarse model.

2.1. Space Mapping Optimization Algorithm

The microwave design can be formulated as a nonlinear minimization
problem of the form

x∗f ∈ arg min
x

U (Rf (x)) , (1)
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where Rf ∈ Rm denotes the response vector of a high-fidelity (or
fine) model of the device of interest, e.g., the modulus of the reflection
coefficient |S21| evaluated at m different frequencies. U is a given scalar
merit function, a minimax function with upper and lower specifications.
The vector x∗f is the optimal design to be determined. The fine model
is assumed to be CPU-intensive so that solving (1) directly (e.g., using
gradient-based algorithm) is usually prohibitive.

Space mapping [1] replaces solving the problem (1) directly by
generating a sequence of approximate solutions, denoted as x(i), i =
0, 1, 2, . . ., and a family of surrogate models R(i)

s , as follows [14]:

x(i+1) = arg min
x

U
(
R(i)

s (x)
)

. (2)

Here, x(0) is the initial design. The surrogate model R(i)
s is a

representation of Rf created using available fine model data, and
updated after each iteration.

Space mapping constructs a surrogate model based on the low-
fidelity (or coarse) model Rc: a less accurate but computationally
cheap representation of the fine model. Let R̄s be a generic SM
surrogate model, i.e., Rc composed with suitable (usually linear)
transformations. At the ith iteration, the surrogate model R(i)

s is
defined as

R(i)
s (x) = R̄s

(
x,p(i)

)
, (3)

where

p(i) = arg min
p

∑i

k=0
wi.k

∥∥∥Rf

(
x(k)

)
− R̄s

(
x(k),p

)∥∥∥ (4)

is a vector of model parameters and wi.k are weighting factors; a
common choice of wi.k is wi.k = 1 for all i and all k (all previous
designs contribute to the parameter extraction process) or wi.i = 1
and wi.k = 0 for k < i (the surrogate model depends on the most
recent design only). In this work, the latter setup is used. The space
mapping optimization algorithm flow is shown in Fig. 1.

Various space mapping surrogate models are available [1, 14].
They can be categorized into four groups: (i) models based on a
(usually linear) distortion of the coarse model parameter space, e.g.,
input SM of the form R̄s(x,p) = R̄s(x,B, c) = Rc(B · x + c) [1];
(ii) models based on a distortion of the coarse model response, e.g.,
output space mapping of the form R̄s(x,p) = R̄s(x,d) = Rc(x) + d;
other versions of coarse model response correction can be found in [14]
(output space mapping with sensitivity) and [31] (manifold mapping);
(iii) implicit space mapping [23], where the parameters used to align the
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Figure 1. Flowchart of the space mapping algorithm. An approximate
fine model optimum is obtained iteratively by optimizing the surrogate
model. The fine model is evaluated at each new design for verification
purposes. Parameter extraction and surrogate model optimization only
involve coarse model.

surrogate and the fine model are different from the design variables, i.e.,
R̄s(x,p) = R̄s(x,xp) = Rc.i(x,xp), with Rc.i being the coarse model
dependent on both the design variables x and the so-called preassigned
parameters xp (e.g., dielectric constant, substrate height) that are
normally fixed in the fine model but can be freely altered in the coarse
model [23]; (iv) custom models exploiting parameters characteristic
to a given design problem; the most characteristic example is the so-
called frequency space mapping R̄s(x,p) = R̄s(x,F) = Rc.f (x,F) [14],
where Rc.f is a frequency-mapped coarse model, i.e., the coarse model
evaluated at frequencies different from the original frequency sweep
for the fine model, according to the mapping ω → f1 + f2ω, with
F = [f1f2]T . Fig. 2 shows the block diagrams of the basic surrogate
models types.
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Figure 2. Basic space mapping surrogate types: (a) input SM, (b)
output SM, (c) implicit SM, (d) frequency SM.

2.2. Coarse Models

The coarse model is the critical component of SM algorithms. As the
parameter extraction (4) and surrogate model optimization (2) require
numerous evaluations of the surrogate, the coarse model should be
computationally cheap. The coarse model should also be reasonably
accurate, otherwise, the SM optimization process may require many
iterations (2)–(4), or may even fail to find a design satisfying given
specification requirements [22]. A qualitative comparison of various
coarse models used in microwave engineering is presented in Table 1.

Analytical models are extremely fast, but reliable ones are hardly
available, except for simple components. Equivalent-circuit models
are also computationally cheap, which, in many cases, allows us
to neglect the computational cost of the parameter extraction and
surrogate optimization. For that reason, many SM-related papers
(e.g., [1, 14, 15, 23]) deal with circuit coarse models; also, they are
easy to construct for structures such as filters, as well as many
microstrip devices. However, both analytical and circuit models may
lack accuracy, and they are typically not available for structures such
as antennas and substrate-integrated circuits.

A generic coarse model is obtained through EM simulation of the
structure of interest with a coarse discretization. These coarse models
are typically more accurate, but computationally more expensive than
the coarse models based on the analytical methods or circuit theory.
Therefore, the computational cost is a major bottleneck in adopting
the coarsely-discretized EM models to SM optimization. A workaround
is to build a function-approximation model using coarse-discretization
EM-simulation data (using, e.g., kriging [24]). This, however, requires
dense sampling of the design space, and should only be done locally to
avoid excessive CPU cost [24].
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Table 1. Coarse models and their characteristics.

Model Type CPU Cost Accuracy Availability

Analytical Very cheap Low Rather limited

Equivalent circuit Cheap Low to decent Limited (mostly filters)

Coarsely-discretized

EM simulation

Relatively

Expensive

Good to

very good

Generic: available

for all structures

3. SPACE MAPPING WITH COARSELY-DISCRETIZED
EM MODELS

In order to facilitate the use of coarse-discretization EM coarse models
with SM algorithms, a careful choice of the surrogate model type has
to be made. Also, efficient algorithms for extracting the surrogate
model parameters and optimizing the surrogate are necessary to reduce
the number of coarse model evaluations required to complete both
processes.

3.1. Surrogate Model

Selecting a proper surrogate model is a non-trivial problem by
itself [22], and can have major influence on the algorithm performance.
When considering SM with coarsely-discretized EM models, one has
to take into account the following factors:

• The number of surrogate model parameters should be limited in
order to reduce the cost of parameter extraction,

• The major discrepancy between the fine and coarsely-discretized
EM models is typically a frequency shift between the model
responses.

Having this in mind, we recommend constructing the surrogate using
frequency SM [1] and implicit SM [14]. Frequency SM exploits only
two parameters regardless of the number of design variables and is
typically able to remove substantial part of the mismatch between the
coarse and fine model.

Let us assume that the components of Rc correspond to the model
evaluations (e.g., |S21|) at m different frequency points, i.e., Ω =
[ω1 ω2 . . . ωm]T , i.e., Rc(x) = Rc(x; Ω) = [Rc(x, ω1) . . . Rc(x, ωm)]T ,
where Rc(x, ωj) is a component of Rc corresponding to frequency ωj .
Frequency SM scales the frequency sweep Ω for the coarse model so that
we have Rc(x;f1+f2 ·Ω), with f1 and f2 being extractable parameters.

Implicit SM can be used as auxiliary mapping. In this paper,
we only consider planar structures and parameters of dielectric layers
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(e.g., permittivity and thickness) can be utilized as additional degrees
of freedom (preassigned parameters [14, 23]) to match the coarse and
fine models. The coarse model with preassigned parameters xp will be
referred to as Rc(x,xp; Ω). The frequency and implicit SM surrogate
model is then Rs(x,p) = Rs(x, [xT

p f1 f2]T ) = Rc(x,xp; f1 + f2 · Ω).
It should be mentioned that response correction techniques

such as output space mapping [14] and manifold mapping [31]
(see also Section 2.1) do not require parameter extraction at all.
Nevertheless, particularly if the coarse model is obtained through
coarse-discretization EM simulation, the relationship between the
coarse and fine model responses (e.g., their relative frequency shift) is,
more or less, similar across the design space, so that both the frequency
and implicit SM are capable of greatly reducing the misalignment
between the models, and thus improving the generalization capability
of the SM surrogate. On the other hand, response correction is
normally local and it does not improve the surrogate’s prediction
capability. In fact, it can introduce the response distortion while
moving away from the design at which it was established [32].

3.2. No-cost Frequency Scaling

Surrogate model parameters are obtained in the parameter extraction
process (4) that involves multiple evaluations of the coarse model.
Here, parameters of the frequency SM are determined without
involving Rc (except Rc (x(i))) as follows:
[
f

(i)
1 , f

(i)
2

]
=arg min

(f1,f2)

∥∥∥Rf

(
x(i)

)
− I

(
Rc

(
x(i); Ω

)
, Ω, f1+f2 · Ω

)∥∥∥, (5)

where I: Rm×Ω× [ωmin, ωmax] → Rm is an interpolation function such
that I(R, Ω, ·) interpolates the response R defined on Ω onto [ω1, ωm]
and extrapolates R onto [ωmin, ω1) and (ωm, ωmax]; ωmin < ω1 (ωmax >
ωm) to allow sufficient “room” for response matching. In particular,
I(R, Ω, f1 + f2 · Ω) is the evaluation of the interpolated/extrapolated
response R (originally defined on Ω) at a “scaled” frequency sweep
f1 + f2 · Ω. Here, I is implemented as piecewise cubic splines.

Note that (5) does not involve any coarse model evaluations so
that it is of no-cost in terms of electromagnetic simulation. Note also
that the scheme (5) can be easily extended assuming, e.g., higher-order
polynomial or any other scaling function.

3.3. Low-cost Parameter Extraction

Preassigned parameters xp of the implicit SM can be found,
after determining the frequency SM coefficients, using a first-order
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approximation of Rc with respect to xp:

H(i) (xp) = Rc

(
x(i),x(i−1)

p ; f1 + f2 · Ω
)

+
[
JRc(x(i), · ;f1+f2·Ω)

(
x(i−1)

p

)]
·
(
xp − x(i−1)

p

)
, (6)

where JRc(x(i), · ;f1+f2·Ω)(x
(i−1)
p ) is an estimated Jacobian of Rc with

respect to xp at x(i) and x(i−1)
p obtained using finite differentiation

(or, adjoint sensitivities, if available). In order to reduce the effect of
possible numerical noise present in the coarse model response, the finite
differentiation is performed using relatively large steps. Let δ(i) be the
parameter extraction search radius at iteration i. For δk = δ(i) · 2k−2,
k = 1, 2, 3, we solve the following sub-problem:

xk
p = arg min

xp:
∥∥∥xp−x

(i−1)
p

∥∥∥≤δk

∥∥∥Rf (x(i))−H(i)(xp)
∥∥∥ . (7)

Then, the values of δk and Ek = ||Rf (x(i)) – Rc(x(i),xpk;f1 + f2 · Ω)||
are interpolated using second-order polynomial to find δ∗ that gives
the smallest (estimated) value of the matching error (δ∗ is then set to
be δ(i+1)). Having δ∗, the preassigned parameters are found as

x(i)
p = arg min

xp:
∥∥∥xp−x

(i−1)
p

∥∥∥≤δ∗

∥∥∥Rf (x(i))−H(i)(xp)
∥∥∥ . (8)

Due to a good accuracy of the coarsely-discretized EM model, the
procedure (7), (8) exploiting the first-order approximation (6) typically
gives satisfactory results. The cost of the parameter extraction is low:
only np + 4 evaluations of Rc, where np is the number of preassigned
parameters (np = 2 for test cases of Section 4). Frequency SM
parameters f1 and f2 can also be included in the extraction procedure
(6)–(8), which allows better matching at the additional cost of 2 coarse
model evaluations.

3.4. Low-cost Surrogate Optimization

Efficiency of the surrogate model optimization can also be improved
by using the scheme similar to (6)–(8). More specifically, we use a
1st-order expansion of Rc with respect to x:

G(i)(x) = Rc

(
x(i),x(i)

p ; f1 + f2 · Ω
)

+
[
J
Rc

(
· ,x(i)

p ;f1+f2·Ω
)(x(i))

]
·
(
x− x(i)

)
, (9)
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where J
Rc( · ,x(i)

p ;f1+f2·Ω)
(x(i)) is an estimated Jacobian of Rc with

respect to x. Let λ(i) be the surrogate optimization search radius
at iteration i. For λk = λ(i) · 2k−2, k = 1, 2, 3, we solve (note that the
model G is corrected by output SM term Rf (x(i))−G(i)(x(i)) to make
it consistent with the fine model at x(i)):

xk = arg min
x:‖x−x(i)‖≤λk

U
(
G(i)(x) + Rf

(
x(i)

)
−G(i)

(
x(i)

))
. (10)

The values of λk and Uk = U(G(i)(xk) + Rf (x(i)) − G(i)(x(i))) are
interpolated using second-order polynomial to find λ∗ that gives the
smallest (estimated) value of the specification error (λ∗ is then set to
be λ(i+1)). The new design is then found as

x(i+1) = arg min
x:‖x−x(i)‖≤λ∗

U
(
G(i)(x) + Rf

(
x(i)

)
−G(i)

(
x(i)

))
. (11)

Note that computational cost of the surrogate model optimization
process is only n + 4 coarse model evaluations.

4. EXAMPLES

In this section, we present several examples demonstrating the
operation and efficiency of space mapping using our parameter
extraction (PE) and surrogate optimization (SO) algorithms described
in Section 3. We compare its performance with conventional space
mapping implementation. More efficient PE and SO results in
substantial reduction of the optimization cost, from 40 to 70 percent,
depending on the test case.

4.1. Microstrip Bandpass Filter [25]

Consider the microstrip bandpass filter [25] shown in Fig. 3. The
design parameters are x = [L1 L2 L3 L4 g]T . The other parameters
are L0 = 5mm and W = 0.6mm. The fine model simulated in
FEKO [26]. The total mesh number for Rf is 882 (simulation time
13min). The total mesh number for the coarsely-discretized FEKO
model Rc is 100 (evaluation time 30 seconds). The design specifications
are |S21| ≤ −20 dB for 4.5GHz ≤ ω ≤ 4.7GHz, |S21| ≥ −3 dB for
4.9GHz ≤ ω ≤ 5.1 GHz and |S21| ≤ −20 dB for 5.3GHz ≤ ω ≤
5.5GHz. The initial design is x(0) = [6.6 4.7 6.2 5.0 0.05]T mm.

SM optimization uses the frequency and implicit SM surrogate
with substrate height and dielectric constant as preassigned parame-
ters. The cost of parameter extraction (cf. Sections 3.2 and 3.3) is 8
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Figure 3. Microstrip bandpass filter: geometry [25].

Table 2. Microstrip bandpass filter: optimization cost.

Algorithm
Algorithm

Component1

Model Evaluations Total Cost

Number & Time
Relative

Cost

Absolute

[min]
Relative4

Standard2

PE 180×Rc (90 min)

80% 266 20.4SO 248×Rc (124 min)

Rf evaluations3 4×Rf (52 min) 20%

This work

PE 24 × Rc (12 min)

33% 78 6.0SO 27×Rc (14 min)

Rf evaluations3 4×Rf (52 min) 67%

1 PE = Parameter extraction, SO = Surrogate model optimization.
2 PE and SO realized using lsqnonlin and fminimax [27], respectively.
3 Includes: three SM iterations and fine model evaluation at x(0).
4 Equivalent number of fine model evaluations.

coarse model evaluations per iteration. Surrogate model optimization
is performed as described in Section 3.4 (9 Rc evaluations per itera-
tion). The optimized design, x(2) = [6.43 4.78 6.17 4.89 0.094]T mm
(specification error −1.4 dB), is obtained after three SM iterations.
The total cost corresponds to about 6 evaluations of the fine model
(Table 2). The relative cost of parameter extraction and surrogate op-
timization is 33%. Fig. 4(a) shows the fine model at the initial and at
the final designs. Fig. 4(b) shows Rf at x(0) as well as the surrogate
model at x(0) before and after parameter extraction.

The filter was also optimized using conventional SM implemen-
tation with parameter extraction and surrogate optimization realized
using Matlab routines (here, lsqnonlin and fminmax from Optimiza-
tion Toolbox [27]). The final design — also obtained after two SM
iterations — is comparable (specification error −1.3 dB), however, the
optimization cost is much higher (Table 2) due to the much larger
number of coarse model evaluations: the contribution of parameter ex-
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Figure 4. Microstrip bandpass filter: (a) Fine model response at the
initial design (dashed line) and at the final design obtained using the
SM algorithm presented here (solid line); (b) Fine model response at
x(0) (solid line), and the coarse model at x(0) before (dashed line) and
after (dotted line) parameter extraction.

traction and surrogate model optimization to the total design cost is
80%.

4.2. Microstrip Bandpass Filter with Open Stub
Inverter [28]

Consider the bandpass microstrip filter with open stub inverter [28]
shown in Fig. 5. The design parameters are x = [L1 L2 L3 S1 S2 W1]T .
The fine and coarse models are simulated in FEKO [26]. The total
mesh number for Rf is 1702 (simulation time 50 min). The total
mesh number for Rc is 160 (evaluation time 50 seconds). The design
specifications are |S21| ≤ −20 dB for 1.8 GHz ≤ ω ≤ 1.9GHz,
|S21| ≥ −1 dB for 1.98 GHz ≤ ω ≤ 2.02GHz and |S21| ≤ −20 dB
for 2.1GHz ≤ ω ≤ 2.2GHz. The initial design is the coarse model
optimal solution x(0) = [24.0 5.0 25.0 0.7 0.2 1.0]T mm.

As before, the SM algorithm uses the frequency and implicit SM
surrogate with substrate height and dielectric constant as preassigned
parameters (parameter extraction cost is 8 coarse model evaluations
per iteration). Surrogate model optimization is performed as described
in Section 3.4 (10 Rc evaluations per iteration). The optimized
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Figure 5. Geometry of the bandpass filter with open stub inverter [28].

Table 3. Microstrip bandpass filter: optimization cost.

Algorithm
Algorithm

Component1

Model Evaluations Total Cost

Number & Time
Relative

Cost

Absolute

[min]
Relative5

Standard2

PE 85×Rc (71 min)

64% 416 8.3SO 234×Rc (195 min)

Rf evaluations3 3×Rf (150 min) 36%

This work

PE 24×Rc (20 min)

18% 245 4.9SO 30×Rc (25 min)

Rf evaluations4 4×Rf (200 min) 82%

1 PE = Parameter extraction, SO = Surrogate model optimization.
2 PE and SO realized using lsqnonlin and fminimax [27], respectively.
3 Includes: two SM iterations and fine model evaluation at x(0).
4 Includes: three SM iterations and fine model evaluation at x(0).
5 Equivalent number of fine model evaluations.

design, x(3) = [23.76 2.87 24.74 0.82 0.13 0.59]T mm (specification
error −0.5 dB), is obtained after three SM iterations. The total cost
corresponds to about 5 evaluations of the fine model (Table 3). The
relative cost of parameter extraction and surrogate optimization is
18%. Fig. 6 shows the fine model at the initial and at the final designs,
as well as Rf at x(0) as well as the surrogate model at x(0) before and
after parameter extraction.

Optimization using conventional SM implementation (lsqnonlin
for parameter extraction and fminimax for surrogate optimization)
yields similar design in two SM iterations (specification error −0.6 dB)
but the design cost is higher (Table 3); with the parameter extraction
and surrogate model optimization being 64% of the total cost.
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Figure 6. Microstrip bandpass filter: (a) Fine model response at the
initial design (dashed line) and at the final design obtained using the
SM algorithm presented here (solid line); (b) Fine model response at
x(0) (solid line), and the coarse model at x(0) before (dashed line) and
after (dotted line) parameter extraction.

4.3. Microstrip Hairpin Filter [29]

Consider the microstrip hairpin filter [29] shown in Fig. 7. The design
parameters are x = [L1 L2 L3 L4 L5 L6 S1 S2 d]T . The fine model
simulated in FEKO [26]. The total mesh number for Rf is 1080.
Simulation time for Rf is 37 min. The total mesh number for the
coarsely-discretized FEKO model Rc is 170 (evaluation time 1min).
The design specifications are |S21| ≤ −20 dB for 3.0GHz ≤ ω ≤
3.3GHz, |S21| ≥ −1 dB for 3.6GHz ≤ ω ≤ 4.4GHz and |S21| ≤ −20 dB
for 4.7GHz ≤ ω ≤ 5.0GHz. The initial design is xinit = [9.0 9.0 9.0
2.0 2.0 2.0 0.2 0.4 0.5]T mm.

The first step is the optimization of the coarse model, which is
performed using the procedure similar to (9)–(11). The approximate
optimum of the coarse model, x(0) = [9.41 9.47 9.39 1.81 2.29 2.35
0.10 0.102 0.217]T mm, is obtained at the cost of only 65 coarse model
evaluations. SM optimization of the filter starts from x(0), using
the frequency and implicit SM surrogate with substrate height and
dielectric constant as preassigned parameters. Parameter extraction
is performed as described in Sections 3.2 and 3.3 (8 coarse model
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Figure 7. Microstrip hairpin filter: geometry [29].

Table 4. Hairpin filter: optimization cost.

Algorithm
Algorithm

Component1

Model Evaluations Total Cost

Number & Time
Relative

Cost

Absolute

[min]
Relative4

Standard2

PE 110×Rc (110 min)

73% 407 11.0SO 186×Rc (186 min)

Rf evaluations3 3×Rf (111 min) 27%

This work

PE 16 × Rc (16 min)

27% 153 4.1SO 26×Rc (26 min)

Rf evaluations3 3×Rf (111 min) 73%

1 PE = Parameter extraction, SO = Surrogate model optimization.
2 PE and SO realized using lsqnonlin and fminimax [27], respectively.
3 Includes: two SM iterations and fine model evaluation at x(0).
4 Equivalent number of fine model evaluations.

evaluations per iteration). Surrogate model optimization is performed
as described in Section 3.4 (13 Rc evaluations per iteration). The
optimized design, x(2) = [9.363 9.507 9.479 1.884 2.433 2.284 0.10 0.196
0.321]T mm (Fig. 8(a); specification error −0.6 dB), is obtained after
two SM iterations. The total cost corresponds to about 4 evaluations of
the fine model (Table 4), with the relative cost of parameter extraction
and surrogate optimization being only 27%. Fig. 8(b) shows Rf at
x(0) as well as the surrogate model at x(0) before and after parameter
extraction.

As comparison, the filter was also optimized using Matlab routines
for performing parameter extraction and surrogate optimization (here,
lsqnonlin and fminmax from Optimization Toolbox [27]). Although the
final design — also obtained after two SM iterations — is comparable
(specification error −0.5 dB), the optimization cost is much higher
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Figure 8. Hairpin filter: (a) Fine model respons e at the initial design
(dashed line) and at the final design obtained using the SM algorithm
presented here (solid line); (b) Fine model response at x(0) (solid line),
and the coarse model at x(0) before (dashed line) and after (dotted
line) parameter extraction.

(Table 4). In this case, the contribution of the parameter extraction
and surrogate model optimization to the total cost is 73%.

4.4. Double Annular Ring Antenna [30]

Consider the stacked probe-fed printed annular ring antenna [30] shown
in Fig. 9. The design parameters are x = [a1 a2 b1 b2 ρ1]T . The fine
model is simulated in FEKO [26] (total mesh number 1480, simulation
time 2 hours 5 minutes). The total mesh number for the coarsely-
discretized FEKO model Rc is 300 (evaluation time 6.5 minutes). The
design specifications are |S11| ≤ −10 dB for 1.75GHz ≤ ω ≤ 2.15 GHz.
The initial design is xinit = [10.0 8.0 30.0 30.0 20.0]T mm.

The optimum of the coarse model, x(0) = [9.66 8.17 29.17 32.12
19.76]T mm, is obtained using the procedure similar to (9)–(11) at the
cost of only 18 coarse model evaluations. The SM algorithm exploits
the frequency and implicit SM surrogate with dielectric constants εr1

and εr2 as preassigned parameters. Parameter extraction requires only
8 evaluations of Rc; surrogate model optimization needs just 9 Rc

evaluations (cf. Section 3).
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Figure 9. Geometry of a stacked probe-fed printed double annular
ring antenna [30].

Table 5. Double annular ring antenna: optimization cost.

Algorithm
Algorithm

Component1

Model Evaluations Total Cost

Number & Time
Relative

Cost

Absolute

[min]
Relative4

Standard2

PE 70×Rc (455 min)

77% 1616 13.0SO 121×Rc (786 min)

Rf evaluations3 3×Rf (375 min) 23%

This work

PE 16 × Rc (104 min)

37% 596 4.7SO 18 × Rc (117 min)

Rf evaluations3 3 × Rf (375 min) 63%

1 PE = Parameter extraction, SO = Surrogate model optimization.
2 PE and SO realized using lsqnonlin and fminimax [27], respectively.
3 Includes: two SM iterations and fine model evaluation at x(0).
4 Equivalent number of fine model evaluations.

The final design shown in Fig. 10(a), x(2) = [10.8 7.96 28.30
32.3 19.47]T mm (specification error −0.4 dB), is obtained after two
SM iterations with the total CPU cost of about four Rf evaluations
(Table 5). The relative cost of parameter extraction and surrogate
optimization is 37%. Fig. 10(b) shows the fine model at x(0) and the
surrogate model at x(0) before and after parameter extraction.
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Figure 10. Double annular ring antenna: (a) Fine model respons e at
the initial design (dashed line) and at the final design obtained using
the SM algorithm presented here (solid line); (b) Fine model response
at x(0) (solid line), and the coarse model at x(0) before (dashed line)
and after (dotted line) parameter extraction.

SM algorithm using standard setup (parameter extraction
with lsqnonlin and surrogate optimization with fminmax ) yielded
comparable design in two iterations (specification error −0.2 dB),
however, at a much larger cost (Table 5).

5. CONCLUSION

Novel parameter extraction and surrogate model optimization schemes
are discussed that improve efficiency of SM algorithms while working
with coarsely-discretized EM coarse models. Together with a proper
selection of the surrogate model (here, frequency and implicit SM),
our approach allows reduction of the computation overhead related
to multiple coarse model evaluations as well as application of space
mapping to problems where equivalent-circuit coarse models are not
available.
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