Vol. 119
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-08-15
Modal Analysis of Metal-Stub Photonic Band Gap Structures in a Parallel-Plate Waveguide
By
Progress In Electromagnetics Research, Vol. 119, 345-361, 2011
Abstract
This work presents a theoretical method to solve metal-stub photonic-band-gap (PBG) problems based on the multiple-scattering and modal analysis methods. The multiple-scattering method is generalized, which replaces the scattering coefficient by a mode-coupling matrix. Corresponding sizes between the full dielectric cylinder and the metal stub could be determined based on modal analysis. The metal stub can generate a similar frequency response to that of the full dielectric cylinder, implying that the metal stub is a good substitute for the dielectric cylinder. An experiment conducted at a low terahertz region verifies the theoretical predictions. This work offers a possibility to design two-dimensional photonic crystals using metal stub by adjusting its height for low terahertz applications.
Citation
Ching Pin Yuan, and Tsun-Hun Chang, "Modal Analysis of Metal-Stub Photonic Band Gap Structures in a Parallel-Plate Waveguide," Progress In Electromagnetics Research, Vol. 119, 345-361, 2011.
doi:10.2528/PIER11050601
References

1. Mendis, R. and D. Grischkowsky, "Undistorted guided-wave propagation of subpicosecond terahertz pulses," Opt. Lett., Vol. 26, No. 11, 846-848, 2001.
doi:10.1364/OL.26.000846

2. Mendis, R. and D. Gischkowsky, "THz interconnect with low-loss and low-group velocity dispersion," IEEE Microw. Wireless Compon. Lett., Vol. 11, No. 11, 444-446, 2001.
doi:10.1109/7260.966036

3. Coleman, S. and D. Grischkowsky, "Parallel plate THz transmitter," Appl. Phys. Lett., Vol. 84, No. 5, 654-656, 2004.
doi:10.1063/1.1644923

4. Nagel, M., P. Haring Bolivar, and H. Kurz, "Modular parallel-plate THz components for cost-efficient biosensing systems," Semicond. Sci. Technol., Vol. 20, S281-S285, 2005.
doi:10.1088/0268-1242/20/7/019

5. Mendis, R., "Nature of subpicosecond terahertz pulse propagation in practical dielectic-filled parallel-plate waveguides," Opt. Lett., Vol. 31, No. 17, 2643-2645, 2006.
doi:10.1364/OL.31.002643

6. Cooke, D. G. and P. Und Jepsen, "Optical modulation of terahertz pulses in a parallel plate waveguide," Opt. Express, Vol. 16, No. 19, 15123-15129, 2008.
doi:10.1364/OE.16.015123

7. Guida, G., A. de Lustrac, and A. Priou, "An introduction to photonic band gap (PBG) materials," Progress In Electromagnetics Research, Vol. 41, 1-20, 2003.
doi:10.2528/PIER02010801

8. Bingham, A. L. and D. R. Grischkowsky, "Terahertz 2-D photonic crystal waveguides," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 7, 428-430, 2008.
doi:10.1109/LMWC.2008.924906

9. Lin, C., C. Chen, G. J. Schneider, P. Yao, S. Shi, A. Sharkawy, and D. W. Prather, "Wavelength scale terahertz two-dimensional photonic crystal waveguides," Opt. Express, Vol. 12, No. 23, 5723-5728, 2004.
doi:10.1364/OPEX.12.005723

10. Zhao, Y. and D. Grischkowsky, "Terahertz demonstrations of effectively two-dimensional photonic bandgap structures," Opt. Lett., Vol. 31, No. 10, 1534-1536, 2006.
doi:10.1364/OL.31.001534

11. Shchegolkov, D. Y., C. E. Heath, and E. I. Simakov, "Low loss metal diplexer and combiner based on a photonic band gap channel-drop filter at 109 GHz," Progress In Electromagnetics Research, Vol. 111, 197-212, 2011.
doi:10.2528/PIER10110808

12. Butt, H., Q. Dai, T. D. Wilkinson, and G. A. J. Amaratunga, "Photonic crystals & metamaterial filters based on 2D arrays of silicon nanopillars ," Progress In Electromagnetics Research, Vol. 113, 179-194, 2011.

13. Bingham, A., Y. Zhao, and D. Grischkowsky, "THz parallel plate photonic waveguides," Appl. Phys. Lett., Vol. 87, 051101-1-051101-3, 2005.

14. Tarot, A.-C., S. Collardey, and K. Mahdjoubi, "Numerical studies of metallic PBG structures," Progress In Electromagnetics Research, Vol. 41, 133-157, 2003.
doi:10.2528/PIER02010806

15. Swillam, M. A., R. H. Gohary, M. H. Bakr, and X. Li, "Efficient approach for sensitivity analysis of lossy and leaky structures using FDTD," Progress In Electromagnetics Research, Vol. 96, 155-172, 2009.

17. Zheng, G., B.-Z.Wang, H. Li, X.-F. Liu, and S. Ding, "Analysis of finite periodic dielectric gratings by the finite-difference frequency-domain method with the sub-entire-domain basis functions and wavelets," Progress In Electromagnetics Research, Vol. 99, 453-463, 2009.
doi:10.2528/PIER09111502

18. Li, J., L.-X. Guo, and H. Zeng, "FDTD method investigation on the polarimetric scattering from 2-D rough surface," Progress In Electromagnetics Research, Vol. 101, 173-188, 2010.
doi:10.2528/PIER09120104

19. Kusiek, A. and J. Mazur, "Hybrid finite-difference/mode-matching method for analysis of scattering from arbitrary configuration of rotationally-symmetrical posts ," Progress In Electromagnetics Research, Vol. 110, 23-42, 2010.
doi:10.2528/PIER10092401

20. Izadi, M., M. Z. A. Ab Kadir, C. Gomes, and W. F. Wan Ahmad, "An analytical second-FDTD method for evaluation of electric and magnetic fields at intermediate distances from lightning channel ," Progress In Electromagnetics Research, Vol. 110, 329-352, 2010.
doi:10.2528/PIER10080801

21. Zhang, P. F., S. X. Gong, and S. F. Zhao, "Fast hybrid FEM/CRE --- UTD method to compute the radiation pattern of antennas on large carriers," Progress In Electromagnetics Research, Vol. 89, 75-84, 2009.
doi:10.2528/PIER08112506

22. Vaseghi, B., N. Takorabet, and F. Meibody-Tabar, "Transient finite element analysis of induction machines with stator winding turn fault ," Progress In Electromagnetics Research, Vol. 95, 1-18, 2009.
doi:10.2528/PIER09052004

23. Benisty, H., D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Béraud, and C. Jouanin, "Radiation losses of waveguide-based two-dimensional photonic crystals: Positive role of the substrate ," Appl. Phys. Lett., Vol. 76, No. 5, 532-534, 2000.
doi:10.1063/1.125809

24. Marcuvitz, N., Waveguide Handbook, Chapter 2, McGraw-Hill, New York, 1951.

25. Li, L.-M. and Z.-Q. Zhang, "Multiple-scattering approach to finite-sized photonic band-gap materials," Phys. Rev. B, Vol. 58, No. 15, 9587-9590, 1998.
doi:10.1103/PhysRevB.58.9587

26. Martin, P. A., Multiple Scattering: Interaction of Time-Harmonic Waves with N obstacles, Cambridge University Press, Cambridge, 2006.

27. Botten, L. C., R. C. McPhedran, N. A. Nicorovici, A. A. Asatryan, C. M. de Sterke, P. A. Robinson, K. Busch, G. H. Smith, and T. N. Langtry, "Rayleigh multipole methods for photonic crystal calculations," Progress In Electromagnetics Research, Vol. 41, 21-60, 2003.
doi:10.2528/PIER02010802

28. Gesell, G. A. and I. R. Ciric, "Recurrence modal analysis for multiple waveguide discontinuities and its application to circular structures ," IEEE Tran. Microw. Theory Tech., Vol. 41, No. 3, 484-490, 1993.
doi:10.1109/22.223749

29. Yao, H.-Y. and T.-H. Chang, "Effect of high-order modes on tunneling characteristics," Progress In Electromagnetics Research, Vol. 101, 291-306, 2010.
doi:10.2528/PIER09121603

30. Noor Amin, A. S., M. Mirhosseini, and M. Shahabadi, "Modal analysis of multilayer conical dielectric waveguides for azimuthal invariant modes ," Progress In Electromagnetics Research, Vol. 105, 213-229, 2010.
doi:10.2528/PIER09121602

31. Canto, J. R., C. R. Paiva, and A. M. Barbosa, "Modal analysis of bi-isotropic H-guides," Progress In Electromagnetics Research, Vol. 111, 1-24, 2011.
doi:10.2528/PIER10093004

32. Jackson, J. D., Classical Electrodynamics, Chapter 10, John Wiley & Sons, New York, 1998.

33. Economou, E. N., Green's Functions in Quantum Physics, Chapter 1, Springer-Verlag, Berlin, 2006.

34. Yuan, C. P., S. Y. Lin, T. H. Chang, and B. Y. Shew, "Millimeter-wave Bragg diffraction of microfabricated crystal structures," Am. J. Phys., Vol. 79, No. 6, 619-623, 2011.
doi:10.1119/1.3552145

35. Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton, 1995.

36. Lourtioz, J.-M., H. Benisty, V. Berger, J.-M. Gérard, D. Maystre, and A. Tchelnokov, "Photonic Crystals: Towards Nanoscale Photonic Devices," Chapter 1, Springer-Verlag, Berlin, 2005.