Vol. 30
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-05-24
Using Correlation Maps in a Wide-Band Microwave GPR
By
Progress In Electromagnetics Research B, Vol. 30, 371-387, 2011
Abstract
This paper describes the use of the correlation maps in the Ground Penetrating Radar (GPR) for the detection of near surface objects. This method is based on the definition of bi-dimensional maps that describe the level and the nature of coherence between the received electromagnetic signals. The technique proposed provides the detection of objects, reducing the impact of the clutter and improving the image contrast by an appropriate combination of the information collected in the variance and time coherence of the received signals. The method has been tested in GPR developed by ourselves and described in detail. The implemented GPR system features a high dynamic vector network analyzer (VNA) and a mechanically scanned Vivaldi antenna; the scanning is bi-dimensional, so that A, B and C scans are available.
Citation
Andrea Di Donato, Marcello Farina, Antonio Morini, Giuseppe Venanzoni, Davide Mencarelli, Mauro Candeloro, and Marco Farina, "Using Correlation Maps in a Wide-Band Microwave GPR," Progress In Electromagnetics Research B, Vol. 30, 371-387, 2011.
doi:10.2528/PIERB11050304
References

1. Daniels, D. J., Ground Penetrating Radar, 2nd Ed., IET, 2007.

2. Druyts, P., A. Merz, M. Peichl, and G. Triltzsch, "HOPE: Raising the reliability of mine detection through an innovative a handheld multi-sensor (MD, GPR, MWR) mine detector prototype with imaging capabilities ," Proceedings of PIERS, Jan. 2003.

3. Crocco, L., F. Soldovieri, T. Millington, and N. J. Cassidy, "Bistatic tomographic GPR imaging for incipient pipeline leakage evaluation," Progress In Electromagnetics Research, Vol. 101, 307-321, 2010.
doi:10.2528/PIER09122206

4. Roslee, M. B., R. S. A. Raja Abdullah, and H. Z. M. Shafr, "Road pavement density analysis using a new non-destructive ground penetrating radar system," Progress In Electromagnetics Research B, Vol. 21, 399-417, 417.

5. Capineri, L., D. J. Daniels, P. Falorni, O. L. Lopera, and C. G. Windsor, "Estimation of relative permittivity of shallow soils by using the ground penetrating radar response from different buried targets," Progress In Electromagnetics Research Letters, Vol. 2, 63-71, 2008.
doi:10.2528/PIERL07122803

6. Ash, E. A. and G. Nicholls, "Super-resolution aperture scanning microscope," Nature, Vol. 237, 510-512, Jun. 1972.
doi:10.1038/237510a0

7. Farina, M., et al. "Algorithm for reduction of noise in ultra-microscopy and application to near-field microwave microscopy," IET Elect. Lett., Vol. 46, No. 1, 50-52, Jan. 2010.
doi:10.1049/el.2010.2859

8. Van der Merwe, A. and I. J. Gupta, "A novel signal processing technique for clutter reduction in GPR measurement of small, shallow, land mines," IEEE Trans. on Geosci. Remote Sens., Vol. 38, No. 6, 2627-2637, 2000.
doi:10.1109/36.885209

9. Yakubov, V. P. and D. Y. Sukhanov, "Solution of a subsurface radio-imaging inverse problem in the approximation of a strongly refractive medium," Radiophysics and Quantum Electronics, Vol. 50, No. 4, 299-299, 2007.
doi:10.1007/s11141-007-0026-8

10. Stolt, R. H., "Migration by Fourier transform," Geophysics,, Vol. 43, No. 1, 23-48, Feb. 1978.
doi:10.1190/1.1440826