Vol. 118
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-06-24
Frequency Domain Dynamic Thermal Analysis in GaAs Hbt for Power Amplifier Applications
By
Progress In Electromagnetics Research, Vol. 118, 71-87, 2011
Abstract
Dynamic temperature distributions in GaAs HBT are numerically analyzed in frequency domain as a function of power dissipation, frequency and space. Complete thermal characteristics, including frequency-dependent thermal impedance and phase lag behavior, are presented. The analysis is also extended for arbitrary periodic or aperiodic pulse heating operation to predict junction temperature of a Power Amplifier (PA) with non-constant envelope input signal. Dynamic junction temperatures of a single finger 2 μm x 20 μm GaAs HBT are predicted for square pulse envelope signal input with power levels varying with up to 10 dB above a nominal average level of 40 mW and with pulse widths ranging from 10 ns to 100 μs. With the input envelope signal amplitude of 10 dB above the average, the analytical results show that junction temperature rises from room temperature of 27oC to 39oC when heated by 10 ns pulse, increase to 36oC by 100ns pulse, 105oC by 1μs pulse and to 198oC by 100 μs pulse. A novel setup is developed for nano-second pulsed measurements, and the analysis is validated through time domain on wafer pulsed measurements at three different power levels: 0 dB, 3 dB, and 6 dB above the average level. Results show that analytical results track well with measured junction temperature within the accuracy of ±5oC over the entire measurement set.
Citation
Than Tun Thein, Choi Look Law, and Kai Fu, "Frequency Domain Dynamic Thermal Analysis in GaAs Hbt for Power Amplifier Applications," Progress In Electromagnetics Research, Vol. 118, 71-87, 2011.
doi:10.2528/PIER11050301
References

1. Rudolph, M., Introduction to Modeling HBTs, Artech House, 2006.

2. Liu, W., Handbook of III-V Heterojunction Bipolar Transistors, Wiley-Interscience, New York, 1998.

3. Marsh, S. P., "Direct extraction technique to derive the junction temperature of HBT's under high self-heating bias conditions," IEEE Trans. Electron. Devices, Vol. 47, No. 2, 288-317, 2000.
doi:10.1109/16.822269

4. Wenhua, D., P. Robin, and M. Frei, "Distributed and multiple time-constant electro-thermal modeling and its impact on ACPR in RF predistortion ," 62nd ARFTG Microwave Measurements Conference, NJ, USA, Dec. 2003.

5. Batty, W., et al. "Electrothermal CAD of power devices and circuits with fully physical time-dependent compact thermal modeling of complex nonlinear 3-D systems," IEEE Trans. Compon. Packag. Technol., Vol. 24, No. 4, 566-590, 2001.
doi:10.1109/6144.974944

6. Clemente, S., "Transient thermal response of power semiconductors to short power pulses," IEEE Trans. Power Electron., Vol. 8, No. 4, 337-341, 1993.
doi:10.1109/63.261001

7. Vermeersch, B. and G. De Mey, "Influence of substrate thickness on thermal impedance of microelectronic structures," Microelectron. Reliab., Vol. 47, No. 2, 437-443, 2007.
doi:10.1016/j.microrel.2006.05.017

8. Baxter, G., "Transient temperature response of a power transistor," IEEE Trans. Parts Hybrids Packag., Vol. 10, No. 2, 132-137, 1974.
doi:10.1109/TPHP.1974.1134844

9. Le Gallou, N., et al. "Analysis of low frequency memory and influence on solid state HPA intermodulation characteristics," IEEE International Microwave Simposium, 979-982, Phoenix, USA, 2001.

10. Takahashi, Y., R. Ishikawa, and K. Honjo, "Precise modeling of thermal memory effect for power amplifier using multi-stage thermal RC-ladder network," Asia-Pacific Microwave Conference, 287-290, Yokohama, Japan, 2006.

11. Sommet, R., et al. "On the determination of the thermal impedance of microwave bipolar transistors," 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 1-8, Las Vegas, USA, 2010.

12. Mazeau, J., et al. "Behavioral thermal modeling for microwave power amplifier design," IEEE Trans. Micro. Theory Tech., Vol. 55, No. 11, 2290-2297, 2007.
doi:10.1109/TMTT.2007.907715

13. Camarchia, V., et al. "Self-consistent electrothermal modeling of class A, AB, and B power GaN HEMTs under modulated RF excitation," IEEE Trans. Micro. Theory Tech., Vol. 55, No. 9, 1824-1831, 2007.
doi:10.1109/TMTT.2007.903839

14. Melczarsky, I., et al. "Compact empirical modeling of nonlinear dynamic thermal effects in electron devices," IEEE Trans. Micro. Theory Tech., Vol. 56, No. 9, 2017-2024, 2008.
doi:10.1109/TMTT.2008.2001956

15. Lonac, J. A., et al. "A simple technique for measuring the thermal impedance and the thermal resistance of HBTs," Gallium Arsenide and Other Semiconductor Application Symposium, 197-200, Paris, France, 2005.

16. Raab, F. H., et al. "Power amplifiers and transmitters for RF and microwave," IEEE Trans. Micro. Theory Tech., Vol. 50, No. 3, 814-826, 2002.
doi:10.1109/22.989965

17. IEEE802.16 "Transmitter constillation error and test method, in air interface for fixed and mobile broadband wireless access systems ," IEEE, NY, USA, 2004.

18. Noijen, S. P. M. and H. J. Eggink, "Effective thermal modeling of discrete components under peak-pulsed power loading by subdomain consideration ," International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Micro-Systems, 1-5, Freiburg-im-Breisgau, Germany, 2008.

19. Carslaw, H. S. and J. C. Jaeger, Conduction of Heat in Solids, Oxford University Press, USA, 1986.

20. Vermeersch, B. and G. De Mey, "A shortcut to inverse fourier transforms: Approximate reconstruction of transient heating curves from sparse frequency domain data," Int. J. Therm. Sci., Vol. 49, No. 8, 1319-1332, 2010.
doi:10.1016/j.ijthermalsci.2010.02.004

21. Kakac, S. and Y. Yener, Heat Conduction, Taylor & Francis, NY, USA, 1985.

22. Vermeersch, B. and G. De Mey, "Thermal impedance plots of micro-scaled devices," Microelectron. Reliab., Vol. 46, No. 1, 174-177, 2006.
doi:10.1016/j.microrel.2005.05.014

23. Xia, J., C. L. Law, and T. T. Thein, "Generation of subnanosecond 7V Gaussian pulse using GaAs HBT with 3V battery supply," Asia-Pacific Microwave Conference, 1605-1608, Singapore, Singapore, 2009.