Vol. 31
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-06-22
Numerical Simulation of Nanoscale Finfet Photodetector for Optimal Detection of Biological Signals Using Interpolating Wavelets
By
Progress In Electromagnetics Research B, Vol. 31, 239-260, 2011
Abstract
The biosensor design for sensing of biological signals is highly complex for accurate detection. Optimal detection of biological signals is necessary for distinguishing different tissues. This paper proposes a threshold-based detection technique which provides significant improvement in FinFET optical biosensor performance using wavelet coefficients. It uses a simple maximum likelihood (ML) function for detecting the threshold values. In this method, we have considered the different layers of body tissue as a turbid medium. To the best of our knowledge, this method is the first of its kind for classifying different tissues using threshold value of optical signals obtained from the surface potential variations of nanoscale FinFET illuminated by laser source of different wavelengths. By using this method, the point to point variations in tissue composition and structural variations in healthy and diseased tissues could be identified. The results obtained are used to examine the performance of the device for its suitable use as a nanoscale sensor.
Citation
R. Ramesh, M. Madheswaran, and K. Kannan, "Numerical Simulation of Nanoscale Finfet Photodetector for Optimal Detection of Biological Signals Using Interpolating Wavelets," Progress In Electromagnetics Research B, Vol. 31, 239-260, 2011.
doi:10.2528/PIERB11042505
References

1. "http://www.cancer.org/Research/CancerFactsFigures/CancerFa-ctsFigures/cancer-facts-and-figures-2010,".

2. Srinivasan, R., D. Kumar, and M. Singh, "Optical characterization and imaging of biological tissues," Current Science, Vol. 87, 218-227, 2004.
doi:10.2528/PIER10061001

3. Byrne, D., M. O'Halloran, M. Glavin, and E. Jones, "Data independent radar beamforming algorithms for breast cancer detection ," Progress In Electromagentic Research, Vol. 107, 331-348, 2010.
doi:10.2528/PIER10071002

4. O'Halloran, M., M. Glavin, and E. Jones, "Rotating antenna microwave imaging system for breast cancer detection," Progress In Electromagentic Research, Vol. 107, 203-217, 2010.
doi:10.2528/PIERB09080505

5. O'Halloran, M., R. C. Conceicao, D. Byrne, M. Glavin, and E. Jones, "FDTD modeling of the breast: A review," Progress In Electromagentic Research B, Vol. 18, 1-24, 2009.
doi:10.1109/3.64355

6. Wilson, B. C. and S. L. Jacques, "Optical reflectance and transmittance of tissues: Principles and applications," IEEE J. Quantum Electron., Vol. 26, 2186-2199, 1990.
doi:10.1109/10.121651

7. Cui, W. and L. E. Ostrander, "The relationship of surface re°ectance measurements to optical properties of layered biological media ," IEEE Trans. Biomed. Eng., Vol. 39, 194-201, 1992.

8. Singh, M. and S. Chako, "Monte Carlo simulation of laser light scattering in mammalian organs," Current Science, Vol. 43, 1015-1019, 1997.
doi:10.1007/BF02513300

9. Chacko, S. and M. Singh, "Multi-layer imaging of human organs by measurement of laser backscattered radiation," Med. Biol. Eng. Comput., Vol. 37, 278-284, 1999.

10. Kumar, D., S. Chacko, and M. Singh, "Monte Carlo simulation of photon scattering in biological tissue models," Indian J. Biochem. Biophys., Vol. 36, 330-336, 1999.
doi:10.1088/1742-6596/178/1/012047

11. Warncke, D., E. Lewis, S. Lochmann, and M. Leahy, "A neural network based approach for determination of opticalscattering and absorption coe±cients in biological tissue," Journal of Physics Conference Series, Vol. 178, 012047, 2009.

12. Chakrabarti, P., S. Kumar, P. Rout, and B. G. Rappai, "A proposed MISFET photodetector," Proceeding 3rd Asia Pacific Microwave Conference, 575-578, 1990.

13. Kabeer, M., K. Gowri, and V. Rajamani, "Three dimensional modeling and simulation of a nano MISFET photodetector," Journal of Optoelectronics and Advanced Materials, Vol. 9, No. 9, 2879-2885, 2007.
doi:10.1109/TED.2002.801263

14. Pei, G., J. Kedzierski, P. Oldiges, M. Ieong, and V. Chin-Chaun Kan, "FinFET design considerations based on 3-D simulation and analytical modeling," IEEE Trans. Electron. Devices, Vol. 49, No. 8, 1411-1419, 2002.
doi:10.1109/TED.2007.902415

15. El Hamid, H. A., J. R. Guitart, V. Kilchytska, D. Flandre, and B. Iniguez, "A 3-D analytical physically based model for the subthreshold swing in undoped trigate FinFETs ," IEEE Trans. Electron Devices, Vol. 54, No. 9, 2487-2496, 2007.
doi:10.1109/TED.2007.893808

16. Yang, W., Z. Yu, and L. Tian, "Scaling theory for FinFETs based on 3-D effects investigation," IEEE Trans. Electron Devices , Vol. 54, No. 5, 1140-1147, 2007.
doi:10.1016/j.sse.2005.04.017

17. Shao, X. and Z. Yu, "Nanoscale FinFET simulation: A quasi-3D quantum mechanical model using NEGF," Solid-State Electronics, Vol. 49, 1435-1445, 2005.
doi:10.1016/j.sse.2006.03.018

18. De Marchi, L., F. Franze, and E. Baravelli, "Wavelet-based adaptive mesh generation for device simulation," Solid-State Electronics, Vol. 50, 650-659, 2006.
doi:10.1109/22.491023

19. Krumholz, M. and L. P. B. Katehi, "MRTD: New time-domain schemes based on multiresolution analysis," IEEE Trans. Microwave Theory Tech., Vol. 44, 555-571, 1996.
doi:10.1109/75.761672

20. Tentzeris, M. and J. Harvey, "Time adaptive time-domain techniques for the design of microwave circuits," IEEE Microwave Guided Wave Lett., Vol. 9, 96-99, 1999.
doi:10.1109/22.842020

21. Toupikov, M. and G. Pan, "On nonlinear modeling of microwave devices using interpolating wavelets," IEEE Trans. Microwave Theory and Tech., Vol. 48, 500-509, 2000.
doi:10.1137/S1064827597316278

22. Holmstron, M., "Solving hyperbolic PDE's using interpolating wavelets," SIAM J. Sci. Comp., Vol. 21, 405-420, 1999.

23. Ramesh, R., M. Madheswaran, and K. Kannan, "Optical effects on the characteristics of a nanoscale FinFET," Progress In Electromagentic Research B, Vol. 21, 235-255, 2010.
doi:10.1109/ICTEL.2010.5478870

24. Moradi, H., M. Falahpour, H. H. Refai, P. G. LoPresti, and M. Atiquzzaman, "BER analysis of optical wireless signals through lognormal fading channels with perfect CSI," 17th International Conference on Telecommunications, 493-497, 2010.
doi:10.1109/TCOMM.2003.815052

25. Zhu, X. and J. M. Kahn, "Performance bounds for coded free-space optical communications through atmospheric turbulence channels," IEEE Trans. on Communications, Vol. 51, No. 8, 1233-1239, 2003.
doi:10.1109/TCOMM.2002.800829

26. Zhu, X. and J. M. Kahn, "Free-space optical communication through atmospheric turbulence channels," IEEE Trans. on Communications, Vol. 50, No. 8, 1293-1300, 2002.
doi:10.1109/TWC.2008.061002

27. Letzepis, N., I. Holland, and W. Cowley, "The Gaussian free space optical MIMO channel with Q-ary pulse position modulation," IEEE Trans. on Wireless Communications, Vol. 7, No. 5, 1744-1753, 2008.