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Abstract—The biosensor design for sensing of biological signals
is highly complex for accurate detection. Optimal detection of
biological signals is necessary for distinguishing different tissues. This
paper proposes a threshold-based detection technique which provides
significant improvement in FinFET optical biosensor performance
using wavelet coefficients. It uses a simple maximum likelihood
(ML) function for detecting the threshold values. In this method,
we have considered the different layers of body tissue as a turbid
medium. To the best of our knowledge, this method is the first of
its kind for classifying different tissues using threshold value of optical
signals obtained from the surface potential variations of nanoscale
FinFET illuminated by laser source of different wavelengths. By using
this method, the point to point variations in tissue composition and
structural variations in healthy and diseased tissues could be identified.
The results obtained are used to examine the performance of the device
for its suitable use as a nanoscale sensor.
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1. INTRODUCTION

The non-invasive methods for monitoring and diagnosis of pathological
changes in tissues are of great importance in medical diagnostics
and therapeutics. Many novel techniques to improve the process of
tumor detection are being developed that differentiate the physical
properties between healthy and cancerous tissues [1]. Primary
prevention seems impossible because the causes of this disease still
remain unknown. Early detection is the key to improving breast
cancer prognosis. Many novel techniques to improve the process of
tumor detection are being developed that differentiate the physical
properties between healthy and cancerous tissues. Ionizing radiation
such as X-ray may be used for the diagnosis of skeletal abnormalities.
Soft tissue lesions and coronary blood vessels may be diagnosed using
angiography [2]. Breast cancers can be detected using mammography
and reconstruction of tomographic images, etc. Ultra wide band
imaging is used for breast cancer detection uses the dielectric contrast
between the normal and cancerous tissues at microwave frequencies [3].
A rotating antenna system is used to create an improved image of
the breast for tumor detection [4]. Geometrically and Dielectrically
accurate numerical breast phantoms used in the development of robust
microwave imaging algorithms have been developed [5]. The microwave
based methods uses the differences in dielectric properties of the
normal and cancerous breast for detection. Due to the ionizing
radiation of these methods, continuous or frequent monitoring is not
recommended. Magnetic Resonance Imaging (MRI) and positron
emission tomography methods are expensive and require contrast
agents, for which many people are allergic. Optical techniques due
to their nonionic, noninvasive, inexpensive characteristics emerge
as an alternative diagnostic technique [2]. The determination of
optical properties of various biological materials is essential for many
diagnostic and therapeutic applications of light in medicine. In free-
space optics, a laser beam incident on a thick tissue surface, due to
mismatch in the refractive index at the air-tissue interface, a part of
the laser light is back scattered, whereas the remaining part is absorbed
in the tissues [6]. The spatial distribution of backscattered and
transmitted components of the laser contains information about the
structure, metabolic and physiologic activities of tissues [7]. Optical
reflectance imaging of tissues is applied to determine the variation
in the internal structure of tissues. Human body consists of layered
structures of different tissues having distinct optical properties [8].
It has been shown experimentally and theoretically that the diffused
reflectance components scattered from the upper and deeper layers of
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tissues appear closer or further from the beam entry point [9, 10]. After
undergoing various processes in the tissue, the backscattered photons
over the surface help in the analysis and reconstruction of images of the
internal structure. A neural network based approach for determination
of optical properties of biological properties has been reported [11].
The photosensitivity and the integrated circuit compatibility of Field-
Effect Transistors (FETs) have extended potential of these devices
for their use as photodetectors [12]. El Hamid et al., [15] presented
the 3-D analytical modeling of FinFET including mobile charge
term. W. Yang et al., [16] reported the scaling theory of FinFET
by 3-D analytical solution of Poisson’s equation in channel region.
The optical effects on the characteristics of a nanoscale FinFET is
reported [23]. Classification of tissues suffers from turbid nature
of the biological tissues which degrades the biosensor performance.
Error performance bound analysis can yield simple analytical upper
bounds or approximations to the bit-error probability [25]. In this
paper, the detection scheme of the sensor is altered by optimally
calculating a threshold value of surface potential ID obtained by the
self-consistent solution of the Poisson-Schrödinger equation solved by
using interpolating Wavelets. In practice, ID is affected by received
signal strength and noise. The likelihood thresholding detection
(LTD) requires a less complex receiver and higher throughput when
compared to conventional methods, such as conventional symbol-by-
symbol detection. It provides a BER performance comparable to
symbol-by symbol detection [24].

2. PHYSICS BASED MODELING

The general FinFETs structure and its geometrical parameters are
shown in Fig. 1 [16]. The electrostatic potential in the subthreshold
region of nanoscale FinFET under illumination from tissue surface can
be described by the 3-D Poisson’s equation.

∂2U (x, y, z)
∂x2

+
∂2U (x, y, z)

∂y2
+

∂2U (x, y, z)
∂z2

=
q[Na(x, y, z)− n(x, y, z) + p(x, y, z)]

εs
+ ∆n−∆Q (1)

where U (x, y, z) is the surface potential at a particular point (x, y, z),
Na (x, y, z) is the uniform channel doping concentration, q is the
electronic charge, εs is the permittivity of silicon, p (x, y, z) is the hole
concentration, ∆n is the excess carriers generated per unit volume, ∆Q
is the attenuated intensity, n (x, y, z) is the electron concentration [14].
The boundary conditions used for solving Equation (1) is shown in [16].
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Figure 1. Schematic diagram of FinFET.

The excess carriers generated per unit volume due to the
absorption of incident optical power density are given by [13, 23]

∆n =
1

Wm

Wm∫

0

Gop (x) τLdy (2)

where Wm is the maximum width of the depletion layer. To determine
the optical parameters at each point on the body surface, the following
assumptions are made [10].
(i) the photons incident upon the tissue were considered as neutral

particles.
(ii) the tissue was considered to be a homogenous medium.
(iii) the beam of photons was considered to be monochromatic.
The incident photon beam profile with each photon of unit intensity
(WT1) is considered. Fig. 2 shows the simulated propagation path
of a photon incident on the tissue surface. The simulation process is
initiated by launching a light beam, which splits into many photon
packets, with initial weight WT1 and allowed to pass through the
biological medium in a given direction. After traveling a distance L
in the biological medium, the photon packet is assumed to interact
with the medium and a fraction WT2 of this packet is deposited at the
point of interaction after wards a new direction of the photon packet
is simulated.

Due to skin tissue-photon interaction, the attenuated intensity
considering the refractive index of two media is given by

∆Q = (WT1)
(
µa/µt

)
×

(
n2

n1

)
(3)
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Figure 2. Schematic diagram of photon path in the tissue.

µa is the absorption coefficient (cm−1), n1 is the refractive index of
first medium and n2 is the refractive index of second medium. The
total attenuation coefficient is given by

µt =
(
µ
′
s + µa

)
(4)

The reduced scattering coefficient is calculated from

µ
′
s = µs (1− g) (5)

The scattering coefficient µs and the anisotropy parameter g are
combined in the reduced scattering coefficient µ′s.

In the wavelength band of 600–1300 nm, the absorption coefficient
µa is approximately 0.1–10 cm−1 and the scattering coefficient µs

is 100–1000 cm−1 for soft tissues. Typical values of the anisotropy
parameter g are between 0.8 and 0.95 for all tissues. The effective
attenuation coefficient µeff =

√
3µaµt and the total attenuation

coefficient µt are the two optical parameters that are used to calculate
the reflectance of the tissues.

The path length l in the tissue medium considering the refractive
index is given by

l = −(lnR)/µt ×
(

n2

n1

)
(6)

where R is a random number between 0 and 1.
After passing through a certain distance in the muscle tissue

medium, the new photon intensity (WT2) coming out from the muscle
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tissue is calculated by

WT2 = WT1(µ
′
s/µt)×

(
n2

n1

)
(7)

After position 2, the photon is scattered and deflected. The deflection
angle θ is calculated by

cos θ =
1
2g

[
1 + g2 −

{
(1− g2)

(1− g + 2gς)

}2
]

for g 6= 0 (8)

ς is random number between 0 and 1.

3. BIOLOGICAL TISSUE MODEL

In this paper, the biological tissue is considered to be a turbid medium
and it is assumed to be a fading model. The optical signals emerging
out of the turbid medium is affected by different types of noise. Hence
the tissue is modeled with the noise introduced in the optical signals
emerging out of the human body due to diffused reflectance [10].

3.1. Additive Noise

The received signal id[n] can be expressed in discrete time n by

id[n] = h[n]s[n] + in[n] (9)

where s[n] is the transmitted signal, h[n] is the normalized tissue fading
due to the turbid nature of the biological medium and it is assumed to
be a constant. in[n] is the total additive noise. Although attenuation
and scattering can also be included in the model, these do not affect
the results when the diffused reflected signal is analyzed stochastically.
Assuming the tissue medium is not affected by turbid-induced fading in
will be the only random variable used in the model. The averaged ML-
based bit-error rate for such a medium is expressed in terms of noise
and signal parameters. The minimum error probability is provided by
the ML-based decision threshold expressed by [26]

ID,G =
σ0I1 + σ1I0

σ0 + σ1
(10)

where σ1 and σ0 are the standard deviations of the noise currents
for values ‘1’ and ‘0’ designated as healthy and diseased tissues
respectively. The threshold value ID,G can be assumed to be a constant
if the Gaussian noise is also assumed to be a constant. In Equation (10)
I1 (= I0 + 2PtR) and I0 are averages of the generated currents at the
detector for values ‘1’ and ‘0’, respectively, where R is the detector’s
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responsivity, and Pt is the average of the transmitted power. For
simplicity we can assume 2PtR = 1. The average signal-to-noise ratio
(SNR) with only additive Gaussian noise can be expressed by [24]

γG =
4R2P 2

t

(σ0 + σ1)
(11)

3.2. Fading Model

The fading medium coefficient, which models the medium between the
transmitter and the biosensor, is given by

h =
I

Im
= e2X , (12)

where Im and I are the signal light intensities at the transmitter
(without turbidity) and biosensor (with turbidity), respectively. Also
log-amplitude X is an identically distributed normal random variable
with mean µx and standard deviation σx.

Since variable X is Gaussian, Equation (12) denotes that the
expected value of the medium coefficient h is equal to the Gaussian
moment-generating function (MGF) evaluated at X = 2

µI = E[h] = Mx(2) = e(2µx+2σ2
x) (13)

Assuming channel coefficients are independent, the variance of h can
be calculated as

σ2
I = E[h2]−E[h]2 = Mx(4)− (Mx(2))2 = e(4µx+4σ2

x)(e4σ2
x − 1) (14)

The average power loss due to turbid fading normalized, such that the
fading does not, on average, attenuate or amplify the optical power.
We explicitly choose

µI = E[h] = 1 (15)

which leads us to µx = −σ2
x. Thus the variance will be equal to [27]

σ2
I = e4σ2

x − 1 (16)

This parameter is called scintillation index (S.I), σx is the fading
strength, σx and varies from 10−2 to 1 for different turbidity
conditions. Assuming the different layers of body tissue as a lognormal
channel medium with additive Gaussian noise, the instant SNR from
Equation (11) will be converted to

γL =
4h2R2P 2

t

(σ1 + σ0)2
(17)
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The averaged value of the SNR can be defined by

γ̄ , 4R2P 2
t

(σ1 + σ0)2
(18)

which is defined same as the expression in Equation (11)

Λ(id) > 1 for ‘1’ bit and Λ(id) < 1 for ‘0’ bit
Λ(id) > ID for ‘1’ bit and Λ(id) < ID for ‘0’ bit.

4. OPTIMAL DETECTION USING LTD METHOD

In this case, detection performance is highly dependent on the
definition of decision metric chosen for the ML function. The ML
decision criteria are determined as [26]

Λ(id) =
p(id |1)
P (id |0)

1
<
0

1 (19)

for any instantaneously received signal id. A detection threshold can
be defined in such a way that the metric rule is considered as id ¿ ID.
If the root of Λ(id) = 1 is id = ID, the probabilities of error for symbols
‘0’ and ‘1’ are calculated by

Pe(1|0) =
1
2
erfc

(
ID − I0√

2σ0

)
, (20)

Pe(0|1) =
1√

32πσx

∞∫

0

1
h

exp

(
− [ln(h)− 2µx]2

8σ2
x

)

×erfc
(

I0 − ID + 2RPth√
2σ1

)
dh. (21)

Assuming equal symbol probabilities, the averaged BER can be
calculated using

BERLTD = 0.5pe(0| 1) + 0.5pe(1| 0). (22)

Clearly ID providing optimal detection for σx = 0.1 is not applicable
for other fading intensities σx = 0.2, 0.3, . . .. So an optimal detection
based on threshold finding a threshold value ID is used.

Based on maximizing the likelihood function Λ(ID) the threshold
value for optimal detection is the solution to Λ(ID) = 1, which leads
to the representation

Λ(ID) =
pe(0| 1)
pe(1| 0)

= 1 (23)
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Then the final equation becomes
∞∫

−∞
exp

(
−

[
X + σ2

x

]2

2σ2
x

)
×

(
erfc

(
I0 − ID + 2RPte

2X

√
2σ1

)

−erfc
(

ID − I0√
2σ0

))
dX = 0. (24)

The threshold value for optimal detection is the solution of
Equation (24) for ID, which is only dependent on the fading intensity
σx and noise statistics. The solution for ID can be numerically derived
utilizing a simple-root finding method.

The LTD method presented in this paper proposes to calculate
the threshold value rather than the likelihood ratio, e.g., the symbol-
by-symbol method, thus facilitating a less complex receiver design.

The delivered BER by LTD yields

BERLTD =
1
2
erfc

(
ID − I0√

2σ0

)
(25)

4.1. Noise and Fading Statistics

The receiver integrates the signal from the photocurrent for each
symbol interval. Thus we assume that the noise and fluctuations due
to different layers of tissue during symbol intervals can be ignored.
However, different symbols face different noise and fading components.
Based on Equation (9), the receiver’s output current is calculated by

ip = 2PtRh + in (26)

Since the transmitted power for symbol ‘0’ is zero, thus ip,0 = in for
this symbol. I0 and σ0 are the average and standard deviation of the
received samples of symbol ‘0’ respectively. The random process ip,1 is
the sum of two independent Gaussian and lognormal variables, in and
h.

Assuming the turbidity-induced fading coefficients are uncorre-
lated, the statistics of a received symbol ‘1’ is equal to

µp,1 = µI + I0, (27)

σ2
p,1 = σ2

I + σ2
1 = e4σ2

x + σ2
1 − 1 (28)

In practice, noise standard deviations σ0 and σ1 are very close and can
be assumed identical by approximation.
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5. MULTIRESOLUTION ANALYSIS AND WAVELETS

For semiconductor device simulation using partial differential equa-
tions, the grid generation is very important [18]. Grid points must be
present accurately approximate to any physical quantity to be mea-
sured. The grid layout should be chosen carefully since the computa-
tional cost grows with the number of grid points. Finer mesh is needed
in doped regions and junctions and coarse mesh in substrate regions.
Wavelets with multiresolution approach (MRA) concept are used to
achieve this goal [19, 20]. The usefulness of wavelets for solving par-
tial differential equations relies on the definition of MRA [21]. The
space of square integral functions on the real line is denoted by L2(R).
The orthonormal basis of wavelets of L2(R) is formed by dilations and
translations of a single function Ψ(x), called a mother wavelet.

Ψjk(x) = 2j/2Ψ(2jx− k), j, k ∈ Z. (29)

The function Ψ(x) has a companion, the scaling function ϕ(x). They
both satisfy the following two-scale relation

ϕ(x) =
∑

k

akϕ(2x− k), (30)

Ψ(x) =
∑

k

(−1)ka1−kϕ(2x− k), (31)

where the coefficients ak (k = 0, 1, . . . , L−1) appearing in the two-scale
relations (30) and (31) are called the wavelet filter coefficients.

The 3D effective mass Schrödinger equation along the n-channel
is given by [17]

−
[
}2

2m∗
x

∂2

∂x2
+
}2

2m∗
y

∂2

∂y2
+
}2

2m∗
z

∂2

∂z2
+ qU(x,y,z)

]
ψx,y,z = Eψx,y,z (32)

In the above equation m∗
x, m∗

y, m∗
z are effective masses in the x,

y and z directions. m∗
x = ml = 0.916m0, m∗

y = mt = 0.19m0,
m∗

z = mt = 0.19m0. E is the eigen energy, ~ is the reduced Planck’s
constant, q is the charge of an electron U (x, y, z) is the surface
potential, ψ (x, y, z) is the eigen wave function. The 3-D Schrödinger
Equation (32) is solved using the following boundary conditions.

ψx=0 = 0, ψx=Leff
= 1; ψy=0 = 0, ψy=Heff

= 0;
ψz=−Teff /2 = 0, ψz=Teff /2 = 0

In this section, the direct solution of 3-D Schrödinger Equation (32)
is obtained using Wavelet method. The Interpolating Wavelet
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approximation to the solution ψj (x, y, z) at scale j is

ψj(x, y, z) =
∑

(j,k,l,m)∈I(η)

∑

k

∑

l

∑
m

c̃j,k,l,m2j/2φ
(
2jx− k

)
2j/2

φ
(
2jy − l

)
2j/2φ

(
2jz −m

)
k, l,m ∈ Z (33)

where c̃j,k,l,m are the wavelet coefficients (i.e., they define the solution
in wavelet space).

Substituting the wavelet series approximation ψj(x, y, z) for
ψ(x, y, z) in Equation (32) yields [22]

∑

(j,k,l,m)∈I(η)

∑

k

∑

l

∑
m

c̃j,k,l,m

(
− }

2m∗
x

d2

dx2
φjk(x)− }

2m∗
y

d2

dy2
φjk(y)

− }
2m∗

z

d2

dz2
φjk(z) + (qUx,y,z − E)φjk(x)φjl(y)φjm(z) = 0

)
(34)

To determine the coefficient cj,k,l,m, we take the inner product of both
sides of Equation (38) with ϕjn

∑

(j,k,l,m)∈I(η)

∑

k

∑

l

∑
m

c̃j,k,l,m

(
− }2

2m∗
x

) Leff∫

0

φ”
jk(x)φjn(x)

− }2

2m∗
y

Heff∫

0

φ”
jl(y)φjn(y)− }2

2m∗
z

Teff∫

0

φ”
jm(z)φjn(z)

+(qUx,y,z −E)φjk(x)φjl(y)φjm(z)φjn(z) = 0

n = 2−N, 3−N, . . . , 2j − 1 (35)
where prime ′, denotes differentiation with respect to the indicated
independent variable, Leff is the length of the channel, Heff is the
height of the fin, Teff is the thickness of the fin.

Using the notations defined in [23] we write Equation (35) as
∑

j,k,l,m∈I(η)

∑

k

∑

l

∑
m

c̃j,k,l,m

(
− }2

2m∗
x

) (
aj

kn + bj
kn + cj

kn

)

+ (qUx,y,z −E) dj
mn = 0; n = 2−N, 3−N, . . . , 2j − 1 (36)

The above equations can be put into the matrix-vector form [23](
− }2

2m∗
x

)
(A + B + C)ψ2 + (qUx,y,z − E)D = 0 (37)

Equation (37) can be written as
A1ψi+1 −A2ψi + A1ψi−1 (38)
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This system may be easily solved by variety of methods. In this
paper, we have used Cholesky’s decomposition method. By solving
this system, we obtain an accurate solution at resolution level j.

6. COMPUTATIONAL TECHNIQUE

The 3D Poisson’s Equation (1) with the boundary conditions under
illumination from normal and cancer breast tissues are solved
numerically using Leibmann’s iteration method to determine the
approximate surface potential for a fixed value of gate voltage and
assumed value of drain voltage. This value of surface potential is given
to the 3D Schrödinger Equation (32). The 3-D Schrödinger equation is
solved directly using the boundary conditions by interpolating wavelet
method and the exact value of surface potential is obtained for the
normal and cancerous breast tissues. The absorption and scattering
coefficients are estimated using the surface potential values of the
nanoscale FinFET. To aid in the analysis of the performance and
effectiveness of the proposed LTD method, this section explains the
numerical results obtained from computer simulations.

A schematic diagram of the experimental set up using nanoscale
FinFET biosensor for determining the normal and cancerous breast
tissues is shown in Fig. 3. The laser light from a compact continuous
wave (CW) semiconductor laser with Popt = 0.5W/m2 operating
at 532 nm is used. The laser light beam is allowed to fall on the

Figure 3. A schematic diagram of the experimental setup using free-
space optics.



Progress In Electromagnetics Research B, Vol. 31, 2011 251

breast tissue surface. The back-scattered light from the tissue surface
is detected by the nanoscale FinFET biosensor and converted into
proportional voltage by a set of operational amplifiers. These output
values are digitized using a 12-bit analog-to-digital (ADC) converters
and are interfaced to a computer for further processing.

7. RESULTS & DISCUSSION

Numerical computation has been carried out for the nanoscale FinFET.
The parameters used for the calculation are given in Table 1.

Figure 4 shows the potential profile of the FinFET photodetector
under normal illumination using interpolating Wavelet method on a
grid of 20×13×10 points. The surface potential U (x, y, z) is calculated
for different values of x and constant values of y and z, ignoring
the background dark noise of the device. The figure also shows the
illumination results from normal and cancerous breast tissues using the
same wavelet method. The surface potential values under illuminated
conditions are calculated for Popt = 0.5W/m2 and VDS = 1.5V at
532 nm. It is also found that the surface potential values decreases than
the normal illumination when the FinFET is illuminated by the source

Figure 4. Surface potential calculation along channel length for
normal and cancerous breast tissue for Popt = 0.5W/m2 and Vds =
1.5V.
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Table 1. Parameters and constants.

Parameter Value

Gate Length (Lg) 30 nm

Top gate oxide thickness (Tox1) 5 nm

Front (or) back gate thickness (Tox2) 1 nm

Channel Length (Leff ) 30 nm

Thermal Voltage (VT ) 0.02585V

Intrinsic carrier concentration (ni) 9.65× 109/cm3

Acceptor concentration (Na) 1× 1016/cm3

Flatband voltage (Vfb) −0.48V

Built-in potential (Vbi) 0.6V

Gate voltage (Vg) 0.2V

Wavelength of light source (λ) 476.5, 488, 496.5, 514.5, 532 nm

Refractive index of normal breast

tissue (n1), Cancerous breast tissue

(n2)

1.35, 1.45

of light that arrives from the normal and cancerous breast tissues. The
decrease of illumination is more pronounced in the cancerous breast
tissue. This is due to the fact that excess carriers generated due to
illumination from normal and cancerous breast tissues are very much
less than the carriers generated under normal illumination condition
and this decreases the conductivity of the channel.

The BER is the key criterion of the performance evaluation of
this method. The simulations assume a normalized lognormal fading
as µI = 1, normalized transmitted power 2RPt = 1 and equal noise
powers for symbols ‘0’ and ‘1’, σ0 = σ1. The noise power is varied
to obtain different SNR values. The BER performance for different
values of σx using the LTD method is shown in Fig. 5. Increasing the
SNR does not usually decrease the approximation error. But when the
fading intensity σx decreases, a decrease of approximation error takes
place. The BER performance of the LTD method can be obtained by
numerically solving the Equation (25). Any variation in noise power,
signal power or fading intensity fundamentally provides a change in
BER. Fig. 6 shows a unique ID for any given medium fading intensity
and any given SNR value. The results shows that increasing SNR
values results in a decrease of the threshold value, ID. Assuming a
fading strength of σx = 0.4, when the averaged SNR increases from
1 to 17 dB, ID decreases from 0.52 to 0.34. A similar tendency is
observed for different values of σx.
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Figure 5. Probability of error using LTD detection method for three
different lognormal media.

Figure 6. Threshold value of the LTD method with SNR for different
values of sigma X.
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Figure 7 shows the variation in reflectance with the increase in
thickness of the tissue at 532 nm. Initially, this optical parameter
increases with increase in thickness of the tissue and attains its
maximum value as it reaches the depth of the tissue. This constant
value is due to the self absorption of photons within the thickness
of the tissue, thus minimizing the influence of tissue reflectance.
It is found that the reflectance is lower for the cancerous breast
tissue than the normal breast tissue. Fig. 8 shows the variation of
absorption of illumination in the normal and cancerous breast tissue.
It is also found that the absorption is more pronounced in cancerous
tissue than the normal breast tissue. This is due to the fact that
the excess carriers generated under illumination are absorbed by the
compositional variation of cancerous tissue than the normal breast
tissue.

Figure 9 shows the wavelength dependence of the absorption
coefficients of both tissues obtained from simulation of the surface
potential measurements of nanoscale FinFET using interpolating
wavelet. The absorption coefficients are strongly affected by the
presence of blood, particularly at wavelengths below 600 nm. The
absorption coefficient for normal breast tissue is 2.32/cm at 476.5 nm
but increases to 2.75/cm at 488 nm and drops to 2.45/cm at 496.5 nm,

Figure 7. Variation of reflectance for normal and cancerous breast
tissue.
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Figure 8. Variation of absorption for normal and cancerous breast
tissue.

Figure 9. Variation of absorption coefficients Vs wavelengths for
normal and cancerous breast tissue.
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and to 2.16/cm at 514.5 nm but increases to 2.55/cm at 532 nm, and
that for cancerous breast tissue is 7.17/cm at 476.5 nm but increases to
7.51/cm at 488 nm and drops to 6.94/cm at 496.5 nm and to 6.56/cm
at 514.5 nm but increases to 6.86/cm at 532 nm. It is found that there
were also significant differences in the absorption coefficients between
the normal and cancerous breast tissues at the same wavelength. The
minimum value of the absorption coefficients for normal breast tissue
is 2.16/cm at 514.5 nm and the maximum value is 2.75/cm at 488 nm.
The minimum value for cancerous breast tissue is 6.56/cm at 514.5 nm
and the maximum value is 7.51/cm at 488 nm.

Figure 10 shows the scattering coefficients for different wave-
lengths obtained from simulation of nanoscale FinFET using inter-
polating wavelets. It shows that the scattering coefficient for normal
breast tissue is 221/cm at 476.5 nm and drops to 215/cm at 488 nm
and to 200/cm at 496.5 nm and to 189/cm at 514.5 nm but increases
to 193/cm at 532 nm. It is also clear that there were also significant
differences in the scattering coefficients between the normal and can-
cerous breast tissues. The scattering coefficient for cancerous breast
tissue is 333/cm at 476.5 nm and drops to 323/cm at 488 nm and to
316/cm at 496.5 nm and to 298/cm at 514.5 nm but increases to 308/cm
at 532 nm. The minimum value of the scattering coefficients for nor-

Figure 10. Variation of scattering coefficients Vs wavelengths for
normal and cancerous breast tissue.
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Figure 11. Variation of anisotropy coefficients Vs wavelengths for
normal and cancerous breast tissue.

mal breast tissue is 189/cm at 514.5 nm and the maximum value is
221/cm at 476.5 nm. The minimum value of the scattering coefficients
for cancerous breast tissue is 298/cm at 514.5 nm and the maximum
value is 333/cm at 476.5 nm.

Figure 11 shows the variation of anisotropy coefficients for different
wavelengths for normal and cancerous breast tissues. It shows that
the anisotropy coefficient for normal breast tissue is 0.913 for 476.5 nm
but increases to 0.921 at 488 nm and drops to 0.917 at 496.5 nm but
increases to 0.922 at 514.5 nm and to 0.930 at 532 nm. The minimum
value of the anisotropy coefficient for cancerous breast tissue is 0.927
at 476.5 nm but increases to 0.935 at 488 nm and drops to 0.931 at
496.5 nm but increases to 0.936 at 514.5 nm and to 0.945 at 532 nm.

8. CONCLUSION

The optimal detection of biophotonic signals in nanoscale FinFET
biosensor using wavelet coefficients approach for accurate determining
of the optical properties of normal and cancerous breast tissues using
nanoscale FinFET shows that the LTD method provides more accurate
estimation of BER in body tissues medium. It is found that there
is a large difference in the optical parameters between normal and
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cancerous breast tissues. It is also found that the optical parameters
are wavelength dependent. The LTD method was found to effectively
reduce the computational load. However, this method produces a
slight loss of BER performance. Thus it provides a trade-off between
receiver complexity and BER performance improvement. In the future
work, the same characteristics of nanoscale FinFET may be used to
characterize the different stages of breast cancer and their optical
parameters can be estimated. Neural networks and optimization
techniques can also be implemented to extract the needed optical
parameters.
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